Генератор прямоугольных импульсов с силовым выходом. Регулируемый генератор прямоугольных импульсов. Простой звуковой генератор своими руками

Радиолюбителям необходимо получать различные радиосигналы. Для этого необходимо наличие нч и вч генератора. Зачастую такой тип приборов называют генератор на транзисторе за его конструктивную особенность.

Дополнительная информация. Генератор тока – это автоколебательное устройство, созданное и используемое для появления электрической энергии в сети или преобразования одного вида энергии в другой с заданной эффективностью.

Автоколебательные транзисторные приборы

Генератор на транзисторе разделяют на несколько видов:

Частотный диапазон принято подразделять на следующие группы:

  • 30 Гц-300 кГц – низкий диапазон, обозначается нч;
  • 300 кГц-3 МГц – средний диапазон, обозначается сч;
  • 3-300 МГц – высокий диапазон, обозначается вч;
  • более 300 МГц – сверхвысокий диапазон, обозначается свч.

Так подразделяют диапазоны радиолюбители. Для звуковых частот используют промежуток 16 Гц-22 кГц и тоже делят его на низкие, средние и высокие группы. Эти частоты присутствуют в любом бытовом приёмнике звука.

Следующее разделение – по виду выдаваемого сигнала:

  • синусоидальный – происходит выдача сигнала по синусоиде;
  • функциональный – на выходе у сигналов появляется специально заданная форма, например, прямоугольная или треугольная;
  • генератор шума – на выходе наблюдается равномерный диапазон частот; диапазоны могут быть различны, в зависимости от нужд потребителя.

Транзисторные усилители различаются по алгоритму действия:

  • RC – основная область применения – низкий диапазон и звуковые частоты;
  • LC – основная область применения – высокие частоты;
  • Блокинг-генератор – используется для производства сигналов-импульсов с большой скважностью.

Изображение на электрических схемах

Для начала рассмотрим получение синусоидального типа сигнала. Самый известный генератор на транзисторе такого типа – генератор колебаний Колпитца. Это задающий генератор с одной индуктивностью и двумя последовательно соединёнными ёмкостями. С помощью него производится генерация требуемых частот. Оставшиеся элементы обеспечивают требуемый режим работы транзистора на постоянном токе.

Дополнительная информация. Эдвин Генри Колпитц – руководитель отдела инноваций «Вестерн Электрик» в начале прошлого века. Был пионером в разработке усилителей сигнала. Впервые произвёл радиотелефон, позволяющий разговаривать через Атлантику.

Также широко известен задающий генератор колебаний Хартли. Он, как и схема Колпитца, достаточно прост в сборке, однако требуется индуктивность с отводом. В схеме Хартли один конденсатор и две последовательно соединённые катушки индуктивности производят генерацию. Также в схеме присутствует дополнительная ёмкость для получения плюсовой обратной связи.

Основная область применения вышеописанных приборов – средние и высокие частоты. Используют для получения несущих частот, а также для генерации электрических колебаний малой мощности. Принимающие устройства бытовых радиостанций также используют генераторы колебаний.

Все перечисленные области применения не терпят нестабильного приёма. Для этого в схему вводят ещё один элемент – кварцевый резонатор автоколебаний. В этом случае точность высокочастотного генератора становится практически эталонной. Она достигает миллионных долей процента. В принимающих устройствах радиоприёмников для стабилизации приёма применяют исключительно кварц.

Что касается низкочастотных и звуковых генераторов, то здесь есть очень серьёзная проблема. Для увеличения точности настройки требуется увеличение индуктивности. Но увеличение индуктивности ведёт к нарастанию размеров катушки, что сильно сказывается на габаритах приёмника. Поэтому была разработана альтернативная схема генератора Колпитца – генератор низких частот Пирса. В ней индуктивность отсутствует, а на её месте применён кварцевый резонатор автоколебаний. Кроме того, кварцевый резонатор позволяет отсечь верхний предел колебаний.

В такой схеме ёмкость не даёт постоянной составляющей базового смещения транзистора дойти до резонатора. Здесь могут формироваться сигналы до 20-25 МГц, в том числе звуковые.

Производительность всех рассмотренных устройств зависит от резонансных свойств системы, состоящей из емкостей и индуктивностей. Отсюда следует, что частота будет определена заводскими характеристиками конденсаторов и катушек.

Важно! Транзистор – это элемент, произведённый из полупроводника. Имеет три вывода и способен от поданного входного сигнала небольшой величины управлять большим током на выходе. Мощность элементов бывает разная. Используется для усиления и коммутации электрических сигналов.

Дополнительная информация. Презентация первого транзистора была проведена в 1947 г. Его производная – полевой транзистор, появился в 1953г. В 1956г. за изобретение биполярного транзистора была вручена Нобелевская премия в области физики. К 80-м годам прошлого века электронные лампы были полностью вытеснены из радиоэлектроники.

Функциональный транзисторный генератор

Функциональные генераторы на транзисторах автоколебания изобретены для производства методично повторяющихся сигналов-импульсов заданной формы. Форма их задаётся функцией (название всей группы подобных генераторов появилось вследствие этого).

Различают три основных вида импульсов:

  • прямоугольные;
  • треугольные;
  • пилообразные.

Как пример простейшего нч производителя прямоугольных сигналов зачастую приводится мультивибратор. У него самая простая схема для сборки своими руками. Часто с её реализации начинают радио электронщики. Главная особенность – отсутствие строгих требований к номиналам и форме транзисторов. Это происходит из-за того, что скважность в мультивибраторе определяется емкостями и сопротивлениями в электрической цепи транзисторов. Частота на мультивибраторе находится в диапазоне от 1 Гц до нескольких десятков кГц. Высокочастотные колебания здесь организовать невозможно.

Получение пилообразных и треугольных сигналов происходит путём добавления в типовую схему с прямоугольными импульсами на выходе дополнительной цепочки. В зависимости от характеристик этой дополнительной цепочки, прямоугольные импульсы преобразуются в треугольные или пилообразные.

Блокинг-генератор

По своей сути, является усилителем, собранным на базе транзисторов, расположенных в один каскад. Область применения узка – источник внушительных, но скоротечных по времени (продолжительность от тысячных долей до нескольких десятков мкс) сигналов-импульсов с большой индуктивной плюсовой обратной связью. Скважность – больше 10 и может доходить до нескольких десятков тысяч в относительных величинах. Наблюдается серьезная резкость фронтов, по своей форме практически не отличающихся от геометрически правильных прямоугольников. Применяются в экранах электронно-лучевых приборов (кинескоп, осциллограф).

Генераторы импульсов на полевых транзисторах

Главное отличие полевых транзисторов – сопротивление на входе соизмеримо с сопротивлением электронных ламп. Схемы Колпитца и Хартли можно собирать и на полевых транзисторах, только катушки и конденсаторы необходимо подбирать с соответствующими техническими характеристиками. В противном случае генераторы на полевых транзисторах работать не будут.

Цепи, задающие частоту, подчиняются таким же законам. Для производства высокочастотных импульсов лучше приспособлен обычный прибор, собранный с использованием полевых транзисторов. Полевой транзистор не шунтирует индуктивность в схемах, поэтому генераторы вч сигнала работают более стабильно.

Регенераторы

LC-контур у генератора можно заменить путём добавления активного и отрицательного резистора. Это регенеративный путь получения усилителя. Такая схема обладает положительной обратной связью. Благодаря этому происходит компенсация потерь в колебательном контуре. Описанный контур называется регенерированным.

Генератор шума

Главное отличие – равномерная характеристика нч и вч частот в требуемом диапазоне. Это означает, что амплитудная характеристика всех частот этого диапазона не будет отличаться. Используются преимущественно в аппаратуре для измерений и в военной отрасли (особенно самолёто,- и ракетостроении). Кроме того, применяют для восприятия звука человеческим ухом – так называемый «серый» шум.

Простой звуковой генератор своими руками

Рассмотрим простейший пример – ревун. Понадобятся всего четыре элемента: плёночный конденсатор, 2 биполярных транзистора и резистор для подстройки. Нагрузкой будет электромагнитный излучатель. Для питания устройства достаточно простой батарейки на 9В. Работа схемы проста: резистор задаёт смещение на базу транзистора. Через конденсатор происходит обратная связь. Резистор для подстройки изменяет частоту. Нагрузка должна быть с высоким сопротивлением.

При всём многообразии типов, размеров и форм исполнения рассмотренных элементов мощных транзисторов для сверхвысоких частот до сих пор не придумано. Поэтому генераторы на транзисторах автоколебания применяют в основном для нч и вч диапазонов.

Видео

555 - аналоговая интегральная микросхема, универсальный таймер - устройство для формирования (генерации) одиночных и повторяющихся импульсов со стабильными временными характеристиками. Применяется для построения различных генераторов, модуляторов, реле времени, пороговых устройств и прочих узлов электронной аппаратуры. В качестве примеров применения микросхемы-таймера можно указать функции восстановления цифрового сигнала, искаженного в линиях связи, фильтры дребезга, двухпозиционные регуляторы в системах автоматического регулирования, импульсные преобразователи электроэнергии, устройства широтно-импульсного регулирования, таймеры и др.

В данной статье расскажу о построении генератора на этой микросхеме. Как написано выше мы уже знаем что микросхема формирует повторяющиеся импульсы со стабильными временными характеристиками, нам это и нужно.

Схема включения в астабильном режиме. На рисунке ниже это показано.

Так как у нас генератор импульсов, то мы должны знать их примерную частоту. Которую мы рассчитываем по формуле.

Значения R1 и R2 подставляются в Омах, C - в фарадах, частота получается в Герцах.
Время между началом каждого следующего импульса называется периодом и обозначается буковкой t. Оно складывается из длительности самого импульса - t1 и промежутком между импульсами - t2. t = t1+t2.

Частота и период - понятия обратные друг другу и зависимость между ними следующая:
f = 1/t.
t1 и t2 разумеется тоже можно и нужно посчитать. Вот так:
t1 = 0.693(R1+R2)C;
t2 = 0.693R2C;

С теорией закончили так что приступим к практике.

Разработал простенькую схему с доступными всем деталями.

Расскажу о ее особенностях. Как уже многие поняли, переключатель S2 используется для переключения рабочей частоты. Транзистор КТ805 используется для усиления сигнала (установить на небольшой радиатор). Резистор R4 служит для регулировки тока выходного сигнала. Сама микросхема служит генератором. Скважность и частоту рабочих импульсов изменяем резисторами R3 и R2. Диод служит для увеличения скважности(можно вообще исключить). Также присутствует шунт и индикатор работы, для него используется светодиод со встроенным ограничителем тока(можно использовать обычный светодиод ограничив ток резистором в 1 кОм). Собственно это все, далее покажу как выглядит рабочее устройство.

Вид сверху, видны переключатели рабочей частоты.

Снизу прикрепил памятку.

Данными подстроечными резисторами регулируется скважность и частота (на памятке видно их обозначение).

Сбоку выключатель питания и выход сигнала.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 Программируемый таймер и осциллятор

NE555

1 В блокнот
Т1 Биполярный транзистор

КТ805А

1 В блокнот
D1 Выпрямительный диод

1N4148

1 В блокнот
С1 Конденсатор 1 нФ 1 В блокнот
С2 Конденсатор 100 нФ 1 В блокнот
С3 Конденсатор 1000 нФ 1 В блокнот
C4 Электролитический конденсатор 100 мкФ 1 В блокнот
R1 Резистор

500 Ом

1

Для проверки и налаживания различных усилителей, в том числе и усилителей 3Ч, полезно пользоваться генератором прямоугольных импульсов. Обычно такие генераторы выполняют по схеме симметричного мультивибратора на двух биполярных транзисторах одинаковой структуры и с двумя частотозадающими цепями. Однако можно собрать более простой генератор на двух транзисторах разной структуры (см. рисунок) с одной частотозадающей цепью.

Работает генератор так. При подаче напряжения питания (конденсатор С1 не заряжен) транзистор VT1 приоткрывается током, протекающим через резистор смещения R1. Коллекторный ток этого транзистора является базовым для VT2 и открывает его. Растущее напряжение на коллекторной нагрузке последнего через цепочку C1R2 еще больше открывает транзистор VT1, в результате происходит лавинообразный процесс открывания обоих транзисторов - формируется фронт прямоугольного импульса.

Длительность вершины импульса определяется продолжительностью зарядки конденсатора С1 через резистор R2. По мере зарядки этого конденсатора ток базы транзистора VT1 уменьшается и наступает момент, когда возникает лавинообразный процесс закрывания обоих транзисторов. На нагрузке формируется отрицательный перепад напряжения - спад импульса. Длительность паузы между импульсами определяется длительностью разрядки конденсатора С1 током, протекающим через резисторы R1 и R2. Затем процесс повторяется.

Работу генератора можно пояснить иначе. Двухкаскадный усилитель охвачен цепью положительной обратной связи (элементы R2C1) и в то же время выведен на линейный режим транзистора VT1 подачей смещения на его базу через резистор R1. Поэтому и возникают релаксационные колебания. Для стабилизации работы генератора каждый каскад охвачен цепью ООС - в первом каскаде она невелика и осуществляется через резистор R1, а во втором каскаде в эмиттерную цепь транзистора VT2 включен резистор R5.

Генератор устойчиво работает при напряжении питания от 1,5 до 12 В, при этом потребляемый ток составляет от 0,15 до единиц миллиампер. Амплитуда выходных импульсов на "Выходе 1" несколько превышает полoвину напряжения питания, а на "Выходе 2" она примерно в 10 раз меньше. При желании можно сделать еще одну ступень деления (1 /100), добавив между нижним по схеме выводом резистора R4 и общим проводом резистор сопротивлением 240м.

При указанных на схеме номиналах деталей и при напряжении питания 2,5 В потребляемый ток составил 0,2 мА, частота импульсов - 1000Гц,скважность - 2(меандр), амплитуда импульсов на "Выходе 1" - 1В.

Разумеется, что при столь простом генераторе параметры сигнала заметно зависят от напряжения источника питания. Поэтому налаживать генератор следует при том напряжении, при котором он будет использоваться. В случае отсутствия генерации подбирают резистор R1 и, возможно, R5. Скважность импульсов устанавливают подбором резистора R2.

Одно из возможных применений генератора - в качестве мигающего светового маячка, например, в сторожевом устройстве. Тогда последовательно с резистором R5 включают светодиод или миниатюрную лампу накаливания, а конденсатор используют емкостью до долей микрофарады, чтобы частота генерации составила 0,5...1 Гц. Для получения необходимой яркости светового индикатора можно установить резисторы R3, R5 меньшего сопротивления, а R4 исключить за ненадобностью.

Микросхема интегрального таймера 555 была разработана 44 года назад, в 1971 году и до сих пор популярна. Пожалуй, ещё ни одна микросхема так долго не служила людям. Чего только на ней не собирали, даже поговаривают, что номер 555 - это число вариантов её применения:) Одно из классических применений 555 таймера - регулируемый генератор прямоугольных импульсов.
В этом обзоре будет описание генератора, конкретное применение будет в следующий раз.

Плату прислали запечатанной в антистатический пакетик, но микросхема очень дубовая и статикой её так просто не убить.


Качество монтажа нормальное, флюс не отмыт




Схема генератора стандартная для получения скважности импульсов ≤2


Красный светодиод подключен на выход генератора и при малой выходной частоте - мигает.
По китайской традиции, производитель забыл поставить ограничивающий резистор последовательно с верхним подстроечником. По спецификации, он должен быть не менее 1кОм, чтобы не перегружать внутренний ключ микросхемы, однако, реально схема работает и при меньшем сопротивлении - вплоть до 200 Ом, при котором происходит срыв генерации. Добавить ограничивающий резистор на плату затруднительно из-за особенности разводки печатной платы.
Диапазон рабочих частот выбирается установленной перемычной в одной из четырёх позиций
Частоты продавец указал неверно.


Реально измеренные частоты генератора при питающем напряжении 12В
1 - от 0,5Гц до 50Гц
2 - от 35Гц до 3,5kГц
3 - от 650Гц до 65кГц
4 - от 50кГц до 600кГц

Нижний резистор (по схеме) задаёт длительность паузы импульса, верхний резистор задаёт период следования импульсов.
Напряжение питания 4,5-16В, максимальная нагрузка на выходе - 200мА

Стабильность выходных импульсов на 2 и 3 диапазонах невысока из-за применения конденсаторов из сегнетоэлектрической керамики типа Y5V - частота сильно уползает не только при изменении температуры, но даже при изменении питающего напряжения (причём в разы). Рисовать графики не стал, просто поверьте на слово.
На остальных диапазонах стабильность импульсов приемлемая.

Вот что он выдаёт на 1 диапазоне
На максимальном сопротивлении подстроечников


В режиме меандр (верхний 300 Ом, нижний на максимуме)


В режиме максимальной частоты (верхний 300 Ом, нижний на минимум)


В режиме минимальной скважности импульсов (верхний подстроечник на максимуме, нижний на минимуме)

Для китайских производителей: добавьте ограничивающий резистор 300-390 Ом, замените керамический конденсатор 6,8мкФ на электролитический 2,2мкФ/50В, и замените конденсатор 0,1мкФ Y5V на более качественный 47нФ X5R (X7R)
Вот готовая доработанная схема


Себе генератор не переделывал, т.к. указанные недостатки для моего применения не критичны.

Вывод: полезность устройства выясняется, когда какая-либо Ваша самоделка потребует подать на неё импульсы:)
Продолжение следует…

Планирую купить +32 Добавить в избранное Обзор понравился +28 +58

Собираем простой функциональный генератор для лаборатории начинающего радиолюбителя

Доброго дня уважаемые радиолюбители! Приветствую вас на сайте “ “

Собираем генератор сигналов – функциональный генератор. Часть 3.

Доброго дня уважаемые радиолюбители! На сегодняшнем занятии в Школе начинающего радиолюбителя мы закончим собирать функциональный генератор . Сегодня мы соберем печатную плату, припаяем все навесные детали, проверим работоспособность генератора и проведем его настройку с помощью специальной программы.

И так, представляю вам окончательный вариант моей печатной платы выполненной в программе, которую мы рассматривали на втором занятии – Sprint Layout :

Если вы не смогли сделать свой вариант платы (что-то не получилось, или было просто лень, к сожалению), то можете воспользоваться моим “шедевром”. Плата получилась размером 9х5,5 см и содержит две перемычки (две линии синего цвета). Здесь вы можете скачать этот вариант платы в формате Sprint Laiout^

(63.6 KiB, 3,607 hits)

После применения лазерно-утюжной технологии и травления, получилась такая заготовка:

Дорожки на этой плате выполнены шириной 0,8 мм, почти все контактные площадки диаметром 1,5 мм и почти все отверстия – сверлом 0,7 мм. Я думаю, что вам будет не очень сложно разобраться в этой плате, и так-же, в зависимости от используемых деталей (особенно подстроечные сопротивления), внести свои изменения. Сразу хочу сказать, что эта плата проверенна и при правильной пайке деталей схема начинает работать сразу.

Немного о функциональности и красоте платы. Беря в руки плату, изготовленную в заводских условиях, вы наверняка замечали как она удобно подготовлена для пайки деталей – и сверху и снизу нанесена белым цветом так называемая “шелкография”, на которой сразу видны и наименование деталей и их посадочные места, что очень облегчает жизнь при пайке радиоэлементов. Видя посадочное место радиоэлемента, никогда не ошибешься в какие отверстия его вставлять, остается только глянуть на схему, выбрать нужную деталь, вставить ее и припаять. Поэтому мы сегодня сделаем плату приближенную к заводской, т.е. нанесем шелкографию на слой со стороны деталей. Единственное, эта “шелкография” будет черного цвета. Процесс очень прост. Если, к примеру, мы пользуемся программой Sprint Layout, то выбираем при печати слой К1 (слой со стороны деталей), распечатываем его как и для самой платы (но только в зеркальном отображении), накладываем отпечаток на сторону платы, где нет фольги (со стороны деталей), центрируем его (а на просвет протравленной платы рисунок виден прилично) и применяя способ ЛУТ переносим тонер на текстолит. Процесс – как и при переносе тонера на медь, и любуемся результатом:

После высверливания отверстий, вы реально будете видеть схему расположения деталей на плате. А самое главное, что это не только для красоты платы (хотя, как я уже говорил, красивая плата – это залог хорошей и долгой работы собранной вами схемы), а главное – для облегчения дальнейшей пайки схемы. Затраченные десять минут на нанесение “шелкографии” заметно окупаются по времени при сборке схемы. Некоторые радиолюбители, после подготовки платы к пайке и нанесения такой “шелкографии”, покрывают слой со стороны деталей лаком, тем самым защищая “шелкографию” от стирания. Хочу отметить, что тонер на текстолите держится очень хорошо, а после пайки деталей вам придется растворителем удалять остатки канифоли с платы. Попадание растворителя на “шелкографию”, покрытую лаком, приводит к появлению белого налета, при удалении которого сходит и сама “шелкография” (это хорошо видно на фотографии, именно так я и делал), поэтому, я считаю, что использовать лак не обязательно. Кстати, все надписи, контура деталей выполнены при толщине линий 0,2 мм, и как видите, все это прекрасно переноситься на текстолит.

А вот так выглядит моя плата (без перемычек и навесных деталей):

Эта плата выглядела бы намного лучше, если бы я не покрывал ее лаком. Но а вы можете как всегда поэкспериментировать, и естественно, сделать лучше. Кроме того, у меня на плате установлены два конденсатора С4, нужного номинала (0,22 мкФ) у меня не оказалось и я заменил его двумя конденсаторами номиналом 0,1 мкФ соединив их параллельно.

Продолжаем. После того, как мы припаяли все детали на плату, припаиваем две перемычки, припаиваем с помощью отрезков монтажных проводов резисторы R7 и R10, переключатель S2. Переключатель S1 пока не припаиваем а делаем перемычку из провода, соединяя выводы 10 микросхемы ICL8038 и конденсатора С3 (т.е. подключаем диапазон 0,7 – 7 кГц), подаем питание с нашего (я надеюсь собранного) лабораторного блока питания на входы микросхемных стабилизаторов около 15 вольт постоянного напряжения

Теперь мы готовы к проверке и настройке нашего генератора. Как проверить работоспособность генератора. Очень просто. Подпаиваем к к выходам Х1 (1:1) и “общий” любой обыкновенный или пьезокерамический динамик (к примеру от китайских часов в будильнике). При подключении питания мы услышим звуковой сигнал. При изменении сопротивления R10 мы услышим как изменяется тональность сигнала на выходе, а при изменении сопротивления R7 – как изменяется громкость сигнала. Если у вас этого нет, то единственная причина в неправильной пайке радиоэлементов. Обязательно пройдитесь еще раз по схеме, устраните недостатки и все будет о,кей!

Будем считать, что этот этап изготовления генератора мы прошли. Если что-то не получается, или получается, но не так, обязательно задавайте свои вопросы в комментариях или на форуме. Вместе мы решим любую проблему.

Продолжаем. Вот так выглядит плата, подготовленная к настройке:

Что мы видим на этой картинке. Питание – черный “крокодил” на общий провод, красный “крокодил” на положительный вход стабилизатора, желтый “крокодил” – на отрицательный вход стабилизатора отрицательного напряжения. Припаянные переменные сопротивления R7 и R10, а также переключатель S2. С нашего лабораторного блока питания (вот где пригодился двухполярный источник питания) мы подаем на схему напряжение около 15-16 вольт, для того, чтобы нормально работали микросхемные стабилизаторы на 12 вольт.

Подключив питание на входы стабилизаторов (15-16 вольт) с помощью тестера проверяем напряжение на выходах стабилизаторов (±12 вольт). В зависимости от используемых стабилизаторов напряжения будет отличаться от ± 12 вольт, но близки к нему. Если у вас напряжения на выходах стабилизаторов несуразные (не соответствуют тому, что надо), то причина одна – плохой контакт с “массой”. Самое интересное, что даже отсутствие надежного контакта с “землей” не мешает работе генератора на динамик.

Ну а теперь нам осталось настроить наш генератор. Настройку мы будем проводить с помощью специальной программы – виртуальный осциллограф . В сети можно найти много программ имитирующих работу осциллографа на экране компьютера. Специально для этого занятия я проверил множество таких программ и остановил свой выбор на одной, которая, как мне кажется, наиболее лучше симулирует осциллограф – Virtins Multi-Instrument . Данная программа имеет в своем составе несколько подпрограмм – это и осциллограф, частотомер, анализатор спектра, генератор, и кроме того имеется русский интерфейс:

Здесь вы можете скачать данную программу:

(41.7 MiB, 5,371 hits)

Программа проста в использовании, а для настройки нашего генератора потребуется лищь минимальное знание ее функций:

Для того чтобы настроить наш генератор нам необходимо подключиться к компьютеру через звуковую карту. Подсоединиться можно через линейный вход (есть не у всех компьютеров) или к разъему “микрофон” (есть на всех компьютерах). Для этого нам необходимо взять какие-либо старые, ненужные наушники от телефона или другого устройства, со штекером диаметром 3,5 мм, и разобрать их. После разборки припаиваем к штекеру два провода – как показано на фотографии:

После этого белый провод подпаиваем к “земле” а красный к контакту Х2 (1:10). Регулятор уровня сигнала R7 ставим в минимальное положение (обязательно, что-бы не спалить звуковую карту) и подключаем штекер к компьютеру. Запускаем программу, при этом в рабочем окне мы увидим две запущенные программы – осциллограф и анализатор спектра. Анализатор спектра отключаем, выбираем на верхней панели “мультиметр” и запускаем его. Появится окошко, которое будет показывать частоту нашего сигнала. С помощью резистора R10 устанавливаем частоту около 1 кГц, переключатель S2 ставим в положение “1” (синусоидальный сигнал). А затем, с помощью подстроечных резисторов R2, R4 и R5 настраиваем наш генератор. Сначала форму синусоидального сигнала резисторами R5 и R4, добиваясь на экране формы сигнала в виде синусоиды, а затем, переключив S2 в положение “3” (прямоугольный сигнал), резистором R2 добиваемся симметрии сигнала. Как это реально выглядит, вы можете посмотреть на коротком видео:

После проведенных действий и настройки генератора, припаиваем к нему переключатель S1 (предварительно удалив перемычку) и собираем всю конструкцию в готовом или самодельном (смотри занятие по сборке блока питания) корпусе.

Будем считать, что мы успешно со всем справились, и в нашем радиолюбительском хозяйстве появился новый прибор – функциональный генератор . Оснащать его частотомером мы пока не будем (нет подходящей схемы) а будем его использовать в таком виде, учитывая, что нужную нам частоту мы можем выставить с помощью программы Virtins Multi-Instrument . Частотомер для генератора мы будем собирать на микроконтроллере, в разделе “Микроконтроллеры”.

Следующим нашим этапом в познании и практическом претворении в жизнь радиолюбительских устройств будет сборка светомузыкальной установки на светодиодах.

При повторении данной конструкции был случай, когда не удалось добиться правильной формы прямоугольных импульсов. Почему возникла такая проблема сказать трудно, возможно из-за такой работы микросхемы. Решить проблему очень легко. Для этого необходимо применить триггер Шмитта на микросхеме К561(КР1561)ТЛ1 по нижеприведенной схеме. Данная схема позволяет преобразовывать напряжение любой формы в прямоугольные импульсы с очень хорошей формы. Схема включается в разрыв проводника, идущего от вывода 9 микросхемы, вместо конденсатора С6.