Взаимодействие генов множественное. Полимерное взаимодействие генов. III. Домашнее задание

Взаимодействие аллельных генов в генотипе (в зависимости от фенотипического эффекта): доминирование, неполное доминирование, кодоминирование, межаллельная комплементация, аллельное исключение.

Доминирование - это такое взаимодействие аллельных генов, при котором проявление одного из аллелей (А) не зависит от присутствия в генотипе другого аллеля (А") и гетерозиготы АА" фенотипически не отличаются от гомозигот по этому аллелю (АА). При неполном доминировании гибриды первого поколения имеют фенотип промежуточный между фенотипами родителей; у гибридов второго поколения расщепление 1:2:1 и по фенотипу, и по генотипу, поскольку каждому генотипу соответствует свой фенотип; расщепление по признаку окрашенный: неокрашенный равно 3:1. Демонстрацией неполного доминирования могут быть наследственные заболевания у человека, проявляющиеся клинически у гетерозигот по мутантным аллелям, а у гомозигот заканчивающиеся смертью (серповидно-клеточная анемия). Иногда гетерозиготы имеют почти нормальный фенотип, а гомозиготы характеризуются пониженной жизнеспособностью.

Кодоминирование - вид взаимодействия аллельных генов, когда на уровне конечного признака в фенотипе проявляются продукты обоих генов (например, формирование признака IV (АВ) группы крови у человека).

Межаллельная комплементация – вид взаимодействия аллельных генов, когда за счет образования гибридного белка у гетерозиготы восстанавливается нормальный фенотип. Такое явление может возникнуть в том случае, если оба аллельных гена мутантны, но мутация в разных участках генов.

Аллельное исключение – вид взаимодействия аллельных генов, когда один из аллельных генов (субгенов или целая хромосома) из пары не работает – продукт гена не образуется (например, выключение субгена при синтезе антител или гетерохроматинизация одной из Х-хромосом у женщин).

Виды взаимодействия неаллельных генов: модифицирующее влияние, комплементарность, эпистаз, эффект положения гена.

Модифицирующее влияние – это вид взаимодействия неаллельных генов, когда продукт одной пары генов модифицирует (изменяет) фенотипический эффект другой пары генов. Гены-модификаторы влияют на пенетрантность или экспрессивность другого гена. Ген-модификатор в системе групп крови АВО(Н): наличие А, В или Н-антигенов в слюне (и других секретах) зависит от секреторного гена Se (расположен в 19 хро-ме). Секреторы: SeSe, Sese. Несекреторы: sese. Например: АВSeSe, ABSese – в слюне обнаруживаются антигены А и В. АВsese – в слюне не обнаруживаются антигены А и В. ООSese – в слюне обнаруживается антиген Н.

Комплементарность - вид взаимодействия неаллельных доминантных генов, в результате которого формируется новый конечный признак.

А и В –комплементарные гены, обусловливают развитие нормального слуха.

Р АаВв х АаВв

норм.сл норм.сл

F АВ Ав аВ ав

норм.сл. г л у х о н е м о т а

Эпистаз – это вид взаимодействия неаллельных генов, когда аллель из одной пары генов подавляет (усиливает) фенотипический эффект другой пары генов. При доминантном эпистазе, когда доминантный аллель одного гена (А) препятствует проявлению другого гена (В или b), расщепление в потомстве зависит от их фенотипического значения и может выражаться соотношением 12:3:1 или 13:3. При рецессивном эпистазе ген, определяющий какой-то признак (В), не проявляется у гомозигот по рецессивному аллелю другого гена (аа). Расщепление в потомстве двух дигетерозигот по таким генам будет соответствовать соотношение 9:3:4.

Эффект положения гена - фенотипический эффект гена зависит от соседних генов. Если ген в результате перекомбинации генов окажется в зоне гетерохроматина, его активность будет снижена.

Общая характеристика взаимодействия: а) аллельных генов, б) неаллельных генов.

15. Закономерности сцепленного наследования признаков. Группы сцепления. (Цис- и транс-фазы сцепления генов. Полное и неполное сцепление. Кроссинговер, его генетический эффект. Синтенные гены. Выявление сцепления по результатам анализирующего скрещивания. Применение результатов по тесному сцеплению генов для целей медико-генетического консультирования. Генетические карты хромосом человека.)

При сцепленном наследовании неаллельные гены расположены в одной паре гомологичных хромосом. Каждая хромосома представляет собой группу сцепления генов. Число групп сцепления у диплоидного организма равно гаплоидному набору хромосом (у женщин – 23 Г.С., у мужчин – 24).

Фазы сцепления генов :

Цис-фаза А В Гаметы: АВ и ав а в 50% 50%

Если гены находятся в цис-фазе (оба доминантных гена локализованы в одной хромосоме, а их рецессивные аллели – в другой): гаметы АВ и аb (по 50%), генотип потомства АаВb и ааbb (по 50%).

Транс-фаза А в Гаметы: Ав и аВ

Если гены находятся в транс-фазе (один доминантный ген локализован в одной хромосоме, а другой в гомологичной ей): типы гамет – Аb и аВ (по 50%), генотип потомства Ааbb, aaBb (по 50%).

Полное сцепление – кроссинговер не происходит. Сцепленные гены всегда наследуются вместе. Примеры: гены рРНК от 40 до 50 копий в каждой ядрышкообразующей хромосоме.

Неполное сцепление – кроссинговер происходит, частота кроссинговера зависит от расстояния между сцепленными генами: тесное сцепление – кроссинговер происходит редко, гены чаще наследуются вместе, примеры: гены Rh-комплекса (СДЕ) в 1 хромосоме, гены HLA-комплекса (АВСД) в 6 хромосоме; синтенное сцепление – кроссинговер происходит часто между генами, далеко расположенными друг от друга в большой хромосоме (синтенные гены ), синтенные гены наследуются практически независимо.

Причина нарушения сцепления – кроссинговер – обмен гомологичных хромосом гомологичными районами, происходит в профазе I мейоза. Частота нарушения сцепления постоянна для каждой пары сцепленных генов. Кроссинговер у женщин происходит чаще, чем у мужчин. Биологическое значение кроссинговера – увеличивает комбинативную изменчивость. При неполном сцеплении у дигетерозиготы образуется 4 типа гамет и 4 фенотипических класса в потомстве в неравных количественных отношениях (причем кроссоверных особей-рекомбинант всегда меньше). Гаметы: АВ и ав – некроссоверные, их образуется больше, Ав и аВ – кроссоверные, их образуется меньше. При слиянии кроссоверных гамет образуются рекомбинанты (особи, у которых генетическая информация перекомбинирована). Процентное соотношение особей, образующихся при слиянии кроссоверных гамет, зависит от расстояния между генами. Сила сцепления между генами обратно пропорциональна расстоянию между ними. За единицу расстояния между генами принята условная единица – морганида . 1 морганида соответствует расстоянию в хромосоме, на котором кроссинговер происходит в 1% гамет. При расстоянии между генами в 50 и более морганид признаки наследуются независимо. Кроссинговер может быть одиночным, двойным (множественным). Частота кроссинговера используется для картирования хромосом (определения порядка расположения генов в хромосоме и относительного расстояния между ними).

Сцепленное наследование отличается от независимого количественным соотношением гамет у потомков, что выявляется при анализирующем дигибридном скрещивании .

Эффект положения генов – изменение фенотипического эффекта генов при их тесном сцеплении. Rh-комплекс (СDЕ, сdе) – выявляются антигены: С, D, Е, с, d, е. Антиген-D самый сильный, он определяет положительный резус. Все остальные – отрицательный.

Генотипы:

CDe - гены С и D сцеплены в цис-фазе, при этом активность гена D снижена геном С

cde и кровь дает слабо положительную реакцию, т.к. мало D-антигена.

Cde - гены С и D сцеплены в транс- фазе. Ген С не оказывает влияния на активность

cDe гена D и кровь дает нормальную положительную реакцию

Генетическая карта хромосомы – схема взаимного расположения генов, находящихся в одной группе сцепления. Расстояние между генами на генетической карте хромосомы определяют по частоте кроссинговера между ними.

Это гены, расположенные в одинаковых местах (локусах) гомологичных хромосом, отвечающие за развитие альтернативных признаков. Взаимодействие аллельных генов происходит только в гетерозиготном состоянии (Аа).

Варианты взаимодействия аллельных генов:

а) полное доминирование,

б) неполное доминирование,

в) кодоминирование,

г) наддоминирование,

д) плейотропное действие гена.

1 . Полное доминирование . Проявляется в тех случаях, когда один аллель
гена (доминантный) полностью скрывает присутствие другого (рецессивного)
аллеля. Например:

А - карие глаза

а - голубые глаза

Человек с генотипом Аа имеет карие глаза.

2. Неполное доминирование . При неполном доминировании фенотип
гибридов первого поколения (Аа) внешне отличаются от родительских особей
(АА) и (аа). Проявление признака является промежуточным по сравнению с
родительскими формами.

Например, при скрещивании гомозиготных растений с красными (АА) и белыми (аа) цветками у гибридов первого поколения цветки оказываются розовыми (Аа).

У человека по типу неполного доминирования наследуется признак, определяющий форму волос: ген кучерявых волос (А) неполностью доминирует над геном прямых волос (а), волнистые волосы определяются генотипом - Аа.

3. Кодоминирование - это взаимодействие двух доминантных аллельных генов. Например, каждый из аллельных генов кодирует определенный белок и у гетерозиготного организма синтезируются два вида белка. По типу кодоминирования у человека наследуется четвертая группа крови (I I).

4. Наддоминир о вание - в гетерозиготном состоянии (Аа) доминантный аллель проявляется в большей степени, чем в гомозиготном (АА). Например, гибриды кукурузы отличаются более высоким ростом, урожайностью зерна по сравнению с гомозиготными растениями Такое явление називается гетерозисом или гибридной силой. У человека но типу наддоминирования проявляется акселерация.

5. Плейотролия - один ген влияет на проявление нескольких признаков, такое явление называется множественным действием одного гена. Например, у человека известная болезнь - синдром Марфана - арахнодактилия («паучьи пальцы») детерминируется доминантным геном, который отвечает за патологическое развитие соединительной ткани, вследствие этого проявляется комплекс патологических признаков - длинные, тонкие («паучьи») пальцы, дефекты развития сердечно-сосудистой системы и подвывих хрусталика (нарушение зрения). В основе таких патологических признаков лежит дефект развития соединительной ткани, обусловленным патологическим геном.

Взаимодействие неаллельных генов

III - I B I B l B i

IV - I A 1 B

Однако, существует редкий эпистатический ген (<р), который в гомозиготном рецессивном (<рд>) состоянии подавляет все доминантные аллели, определяющие группы крови. Вследствие этого у людей с генотипом - срср, фенотипически проявляется первая только группа крови.

Например, у людей с генотипом \ А 1 А <р<р будет проявляться I группа крови, т.к. активность гена 1 А блокируется геном-супрессором (р, который проявляет свою активность в гомозиготном рецессивном состоянии (<рф) - Первая группа крови будет проявляться у людей с такими генотипами:

3. Полимерия - проявление одного признака в зависимости от суммарного действия нескольких неаллельных генов. Причем, чем больше доминантных генов, тем сильнее проявляется признак. Полимерные гены принято обозначать одной буквой латинского алфавита с указанием цифрового индекса (А ь А 2).

Примером полимерного действия генов у человека является наследование цвета кожи. Несколько пар (около пяти пар) неалельных доминантных генов, отвечающих за синтез пигмента меланина, который обуславливает темный цвет кожи - А|, А 2 и т. д. Генотипы людей с соответствующими оттенками цвегов кожи могут быть:

А|А|А А 2 - черная кожа А^АгАг - темная aia, A 2 A 2 - смуглая а!а|А 2 а 2 - светлая а!а,а 2 а 2 - белая.

Кроме наследования цвета кожи, полимерными генами у человека определяются большинство количественных признаков, таких как рост, масса тела, интеллектуальные особенности, склонность к повышению артериального давления, устойчивость к инфекционным заболеваниям и другие.

Признаки, которые определяются несколькими парами неаллельных генов, называются полигенными .

Задание 1. Трансформируйте активные конструкции в пассивные:

что заполняет что что скрывает что /присутствие наличие / что угнетает действие чего что подавляет что что блокирует активность чего.

Задание 2. Напишите предложения, раскрывая скобки:

1. Кодоминирование - это явление, когда (гетерозиготное состояние) проявляются признаки обоих генов.

2. Комплементарность проявляется тогда, когда действие одного гена дополняется (действие другого гена).

3. Существует редкий эпистатический ген (ф), который в гомозиготном рецессивном состоянии подавляет (все доминантные аллели групп крови).

4. Активность генов блокируется (эпистатический ген в гомозиготном состоянии).

что обусловлено чем (тем, что...)

Задание 3. Трансформируйте простые предложения в сложные.

1. Нормальный слух обусловлен присутствием двух неаллельных генов ДиЕ.

2. Окраска венчиков цветка обусловлена наличием двух доминантных генов А и В.

3. Группы крови по системе АВО обусловлены наследованием трех аллелей одного типа (1 А, 1В, Ю).

Задание 4. Прочитайте информацию. Скажите, по каким признакам различаются аллельные и неаллельные гены:

а) аллельные гены - это гены, расположенные в одинаковых местах гомологичных хромосом. Взаимодействие происходит только в гетерозиготном состоянии;

б) неаллельные гены - это гены, которые расположены в негомологичных хромосомах. Взаимодействие между неаллельными генами происходит в том случае, если они отвечают за развитие одного какого-либо признака.

Задание 5. Прочитайте текст 1 «Взаимодействие аллельных генов» и дайте определение каждого из вариантов взаимодействия аллельных генов.

Задание 6. Прочитайте часть текста «Эпистаз» и ответьте на вопрос: «Что понимают под...?»

а) эпистазом;

б) доминантным эпистазом;

в) «бомбейским феноменом»?

Задание 7. Расскажите о полимерии по следующему плану.

1. Определение полимерии.

2. Зависимость степени проявления признака от количества доминантных генов.

3. Признаки, определяемые полимерными генами.

4. Пример полимерного действия генов.

Решение типовых задач

Взаимодействие аллельных генов (неполное доминирование)

I. У человека прямые волосы - рецессивный признак, а курчавые -неполностью доминируют над прямыми, у гетерозигот проявляются волнистые волосы. Какие дети могут быть у родителей с волнистыми волосами?

Обозначим гены:

А - курчавые волосы

а - прямые волосы

Аа - генотип человека с волнистыми волосами.

Схема брака:

Р: $Аа х с?Аа

Гаметы: А, а А, а

F| : АА; Аа, Аа; аа

курчавые волнистые прямые волосы волосы волосы

Ответ : 25% детей будут иметь курчавые волосы (ЛА), 25% - прямые волосы (аа) и 50% - волнистые волосы (Аа).

Взаимодействие аллельных генов (кодоминированис)

2. Мужчина со II группой крови (гомозиготный) женился на женщине с III группой крови (гомозигота). Обозначте:

б) генотипы родителей;

в) напишите схему брака;

д) определите, какие группы крови могут быть детей;

е) какое взаимодействие аллельных генов проявилось в данной ситуации?

Основные закономерности наследования впервые были разработаны Грегором Менделем. Любой организм обладает многими наследственными признаками. Наследование каждого из них Г. Мендель предложил изучать независимо от того, что наследуется другими. Доказав возможность наследования одного признака независимо от других, он тем самым показал, что наследственность делима и генотип состоит из отдельных единиц, определяющих отдельные признаки и относительно независимых друг от друга. Выяснилось, что, во-первых, один и тот же ген может оказывать влияние на несколько различных признаков и, во-вторых, гены взаимодействуют друг с другом. Это открытие стало основой для разработки современной теории, рассматривающей генотип как целостную систему взаимодействующих генов. Согласно этой теории, влияние каждого отдельного гена на признак всегда зависит от остальной генной конституции (генотипа) и развитие каждого организма есть результат воздействия всего генотипа. Современные представления о взаимодействии генов представлены на Рис. 1.

Рис. 1. Схема взаимодействия генов ()

Аллельные гены - гены, определяющие развитие одного и того же признака и расположенные в идентичных участках гомологичных хромосом.

При полном доминировании доминантный ген полностью подавляет проявление рецессивного гена.

Неполное доминирование носит промежуточный характер. При этой форме взаимодействия генов все гомозиготы и гетерозиготы сильно отличаются друг от друга по фенотипу.

Кодоминирование - явление, при котором у гетерозигот проявляются оба родительских признака, то есть доминантный ген в полной мере не подавляет действие рецессивного признака. Примером может служить окрас шерсти коров шортгорнской породы, доминантная окраска - красная, рецессивная - белая, а гетерозигот имеет чалую окраску - часть волосков красного и часть волосков белого цветов (Рис. 2).

Рис. 2. Окрас шерсти коров шортгорнской породы ()

Это пример взаимодействия двух генов.

Известны и другие формы взаимодействия, когда вступают во взаимодействие три и более гена - такой тип взаимодействия носит название множественный аллелизм . За проявление таких признаков отвечают несколько генов, два из которых могут находиться в соответствующих локусах хромосом. Наследование групп крови у человека - пример множественного аллелизма. Группа крови у человека контролируется аутосомным геном, его локус обозначается I, три его аллели обозначаются А, В, 0. А и В - кодоминантны, О - рецессивен по отношению к обоим. Зная, что из трех аллелей в генотипе может быть только две, мы можем предположить, что сочетания могут быть соответствующими четырем группам крови (Рис. 3).

Рис. 3. Группы крови человека ()

Для закрепления материала решите следующую задачу.

Определите, какие группы крови могут быть у ребенка, родившегося от брака между мужчиной, имеющим первую группу крови - I(0) и женщины, имеющей четвертую группу крови - IV(AB).

Неаллельные гены - это гены, расположенные в различных участках хромосом и кодирующие неодинаковые белки. Неаллельные гены могут взаимодействовать между собой. Во всех случаях взаимодействия генов менделевские закономерности строго соблюдаются, при этом либо один ген обуславливает развитие нескольких признаков, либо, наоборот, один признак проявляется под действием совокупности нескольких генов. Взаимодействие неаллельных генов проявляется в четырех основных формах: эпистаз, комплементарность, полимерия и плейотропия.

Комплементарность - тип взаимодействия генов, при котором признак может проявляться в случае нахождения двух или более генов в генотипе. Так, в образовании хлорофилла у ячменя принимают участие два фермента, если они находятся в генотипе вместе - развивается зеленая окраска хлорофилл, если находится только один ген - растение будет иметь желтую окраску. В случае отсутствия обоих генов растение будет иметь белый окрас и будет нежизнеспособно.

Эпистаз - взаимодействие генов, при котором один неаллельный ген подавляет проявления другого неаллельного гена. Примером служит окраска оперения у кур белых леггорнов, которая контролируется двумя группами ген:

доминантный ген - А, отвечает за белый окрас;

рецессивный ген - а, за цветную окраску;

доминантный ген - В, отвечает за черный окрас;

рецессивный ген - в, за коричневый окрас.

При этом белая окраска подавляет проявление черной (Рис. 4).

Рис. 4. Пример эпистаза белых леггорнов ()

При скрещивании дух гетерозигот, белой курицы и белого петуха, мы видим в решетке Пеннета результаты скрещивания: расщепление по фенотипу в соотношении

12 белых цыплят: 3 черных цыпленка: 1 коричневый цыпленок.

Полимерия - явление, при котором развитие признаков контролируется несколькими неаллельными генами, располагающимися в разных хромосомах.

Чем больше доминантных аллелей данного гена, тем больше выраженность данного признака. Примером полимерии является наследование цвета кожи у человека. За окраску цвета кожи у человека отвечает две пары генов:

если все четыре аллели этих генов будут доминантны, то проявится негроидный тип окраски кожи;

если один их генов будет рецессивный - окраска кожи будет темного мулата;

если две аллели будут рецессивными - окраска будет соответствовать среднему мулату; если будет оставаться только одна доминантная аллель - окраска будет светлого мулата; если рецессивны все четыре аллели - окраска будет соответствовать европеоидному типу кожи (Рис. 5).

Рис. 5. Полимерия, наследование цвета кожи человеком ()

Для закрепления материала решите задачу.

Сын белой женщины и чернокожего мужчины женился на белокожей женщине. Может ли сын, рожденный от такого брака, оказаться темнее своего отца?

Плейотропия - взаимодействие, при котором один ген контролирует развитие нескольких признаков, то есть один ген отвечает за формирование фермента, который влияет не только на свою реакцию, но и оказывает влияние на вторичные реакции биосинтеза.

Примером может являться синдром Марфана (Рис. 6), который вызывается мутантным геном, приводящим к нарушению развития соединительной ткани.

Рис. 6. Синдром Марфана ()

Такое нарушение приводит к тому, что у человека формируются вывих хрусталика глаза, пороки клапана сердца, длинные и тонкие пальцы, пороки развития сосудов и частые вывихи суставов.

Сегодня мы узнали, что генотип - это не простая совокупность генов, а система сложного взаимодействия между ними. Формирование признака есть результат совместного действия нескольких генов.

Список литературы

  1. Мамонтов С.Г., Захаров В.Б., Агафонова И.Б., Сонин Н.И. Биология. Общие закономерности. - Дрофа, 2009.
  2. Пономарева И.Н., Корнилова О.А., Чернова Н.М. Основы общей биологии. 9 класс: Учебник для учащихся 9 класса общеобразовательных учреждений/Под ред. проф. И.Н. Пономаревой. - 2-е изд., перераб. - М.: Вентана-Граф, 2005.
  3. Пасечник В.В., Каменский А.А., Криксунов Е.А. Биология. Введение в общую биологию и экологию: Учебник для 9 класса, 3-е изд., стереотип. - М.: Дрофа, 2002.
  1. Volna.org ().
  2. Bannikov.narod.ru ().
  3. Studopedia.ru ().

Домашнее задание

  1. Дать определение аллельным генам, назвать их формы взаимодействия.
  2. Дать определение неаллельным генам, назвать их формы взаимодействия.
  3. Решить задачи, предложенные к теме.

Лекция 22. Взаимодействие генов

Изучая закономерности наследования, Г.Мендель исходил из предположения, что один ген отвечает за развитие только одного признака. Например, ген, отвечающий за развитие окраски семян гороха, не влияет на форму семян. Причем эти гены располагаются в разных хромосомах, и их наследование независимо друг от друга. Поэтому может сложиться впечатление, что генотип представляет собой простую совокупность генов организма. Однако сам Мендель в ряде опытов столкнулся с явлениями наследования, которые не могли быть объяснены с помощью открытых им закономерностей. Так, при изучении наследования окраски семенной кожуры, Мендель обнаружил, что ген, вызывающий образование бурой семенной кожуры, способствует также развитию пигмента и в других частях растения. Растения с бурой семенной кожурой имели цветки фиолетовой окраски, а растения с белой семенной кожурой - белые цветки. В других опытах, проводя скрещивание белой и пурпурной фасоли, он получил во втором поколении целый ряд оттенков - от пурпурного до белого. Мендель пришел к заключению, что наследование пурпурного цвета зависит не от одного, а от нескольких генов, каждый из которых дает промежуточную окраску. Можно говорить о том, что Мендель не только установил законы независимого наследования пар аллелей, но и заложил основы учения о взаимодействии генов.

После переоткрытия законов наследования признаков, многочисленные опыты подтвердили правильность установленных Менделем закономерностей. Вместе с тем, постепенно накапливались и факты, показывающие, что полученные Менделем числовые соотношения при расщеплении гибридного поколения не всегда соблюдались. Это указывало на то, что взаимоотношения между генами и признаками носят более сложный характер. Выяснилось, что один и тот же ген может оказывать влияние на развитие нескольких признаков; один и тот же признак может развиваться под влиянием многих генов.

Взаимодействие генов

Как правило, взаимодействие генов имеет биохимическую природу, то есть оно основано на взаимодействии белков, синтезируемых под действием определенных генов. Взаимодействовать друг с другом могут как аллельные, так и неаллельные гены.

Взаимодействие аллельных генов. Различают несколько типов взаимодействия аллельных генов: полное доминирование , при котором рецессивный признак не проявляется, неполное доминирование , при котором у гибридов наблюдается промежуточный характер наследования, кодоминирование , в этом случае у гибридов фенотипически проявляются оба признака. Например, кодоминирование проявляется у людей с 4 группой крови. Первая группа крови у людей с аллелями i 0 i 0 , вторая - с аллелями I A I A или I A í 0 ; третья - I В I В или I В í 0 ; четвертая группа имеет аллели I А I В. Сверхдоминирование – лучшая приспособленность гетерозигот от моногибридного скрещивания (например, Аа) по сравнению с обоими типами гомозигот (АА и аа). Сверхдоминирование можно определить также как гетерозис, возникающий при моногибридном скрещивании. Наиболее известный пример взаимоотношения между нормальным (S) и мутантным (s) аллелями гена, контролирующего структуру гемоглобина у человека. Люди, гомозиготные по мутантной аллели (ss), страдают тяжёлым заболеванием крови – серповидноклеточной анемией, от которого они гибнут обычно в детском возрасте (эритроциты больного имеют серповидную форму и содержат гемоглобин, структура которого незначительно изменена в результате мутации). Однако в тропической Африке и других районах, где распространена малярия, в популяциях человека постоянно присутствуют все три генотипа SS, Ss и ss (20-40% населения гетерозиготы Ss). Оказалось, что сохранение в популяциях человека летальной (смертельной) аллели (s) обусловлено тем, что гетерозиготы (Ss) более устойчивы к малярии, чем гомозиготы по нормальному гену (SS), и, следовательно, обладают отборным преимуществом.


Взаимодействие неаллельных генов . Известно много примеров, когда гены влияют на характер проявления определенного неаллельного гена или на саму возможность проявления этого гена.

Комплементарное взаимодействие . Комплементарными называют гены, обусловливающие при совместном сочетании в генотипе в гомозиготном или гетерозиготном состоянии новое фенотипическое проявление признака. Классическим примером комплементарного взаимодействия генов является наследование формы гребня у кур (рис. 331). При скрещивании кур, имеющих розовидный и гороховидный гребень, все первое поколение имеет ореховидный гребень.

При скрещивании гибридов первого поколения у потомков наблюдается расщепление по форме гребня: 9 ореховидных: 3 розовидных: 3 гороховидных: 1 листовидный. Генетический анализ показал, что куры с розовидным гребнем имеют генотип А_bb, с гороховидным - ааВ_, с ореховидным - А_В_ и с листовидным - ааbb, то есть развитие розовидного гребня происходит в том случае, если в генотипе имеется только один доминантный ген - А, гороховидного - наличие только гена В, сочетание генов А В обусловливает появление ореховидного гребня, а сочетание рецессивных аллелей этих генов - листовидного.

При комплементарном взаимодействии генов в дигибридном скрещивании получаются расщепления потомков отличные от менделевского: 9:7, 9:3:4, 13:3, 12:3:1, 15:1, 10:3:3, 9:6:1. Однако все они являются видоизменениями общей менделевской формулы 9:3:3:1.

Эпистаз . Эпистатичным называют такое взаимодействие генов, при котором аллель одного гена подавляет действие аллелей других генов. Эпистатичное взаимодействие противоположно комплементарному. Некоторые породы кур имеют белое оперение, другие же - окрашенное.

Белое оперение определяется несколькими различными генами, например, у белых леггорнов - генами ССII, а у белых плимутроков - ccii (рис. 332). Доминантная аллель гена С определяет синтез предшественника пигмента (хромогена, обеспечивающего окраску пера), а его рецессивная аллель с - отсутствие хромогена. Ген I является подавителем действия гена С, а аллель i не подавляет его действия. Таким образом, белая окраска у кур определяется не наличием особых генов, определяющих развитие этой окраски, а наличием гена, подавляющего ее развитие.

При скрещивании, например, леггорнов (ССII) с плимутроками (ссii), все потомство F1 имеет белую окраску, которая определяется наличием в их генотипе гена-подавителя (СсIi). Если же гибридов F1 скрестить между собой, то во втором поколении происходит расщепление по окраске в отношении 13/16 белых: 3/16 окрашенных. Окрашенным оказывается та часть потомства, в генотипе которой имеется ген окраски и отсутствует его подавитель (С_ii).

Полимерия. Скрещивая белую и пурпурную фасоли, Мендель столкнулся с явлением полимерии. Полимерией называют однозначное влияние двух, трех и более неаллельных генов на развитие одного и того же признака. Такие гены называют полимерными, или множественными, и обозначают одной буквой с соответствующим индексом, например, А1, А2, а1, а2. Полимерные гены контролируют большинство оличественных признаков организмов: высоту растения, массу семян, масличность семян, содержание сахара в корнеплодах сахарной свеклы, удойность коров, яйценоскость, вес тела и т.д.

Явление полимерии было открыто в 1908 г. при изучении окраски зерновки у пшеницы Нельсоном-Эле (рис. 333). Он предположил, что наследование окраски у зерновки пшеницы обусловлено двумя или тремя парами полимерных генов. При скрещивании краснозерной и белозерной пшеницы в F1 наблюдалось промежуточное наследование признака: все гибриды первого поколения имели светло-красное зерно. В F2 происходило расщепление в отноше

нии 63 краснозерных на 1 белозерное.

Причем краснозерные зерновки имели разную интенсивность окраски - от темно-красной до светло-красной. Исходя из наблюдений, Нельсоном-Эле определил, что признак окраски зерновок обуславливает три пары полимерных генов. У человека по типу полимерии наследуется, например, окраска кожи.

Плейотропия. Плейотропией называют множественное действие генов. Плейотропное действие генов имеет биохимическую природу: один белок-фермент, образующийся под контролем одного гена, определяет не только развитие данного признака, но и воздействует на вторичные реакции биосинтеза различных других признаков и свойств, вызывая их изменение.

Плейотропное действие генов впервые было обнаружено Г. Менделем, который обнаружил, что у растений с пурпурными цветками всегда имелись красные пятна в пазухах листьев, а семенная кожура была серого или бурого цвета. То есть развитие этих признаков определяется действием одного наследственного фактора (гена).

У человека встречается рецессивная наследственная болезнь-серповидно-клеточная анемия. Первичным дефектом этой болезни является замена одной из аминокислот в молекуле гемоглобина, что приводит к изменению формы эритроцитов. Одновременно с этим возникают глубокие нарушения в сердечно-сосудистой, нервной, пищеварительной, выделительной системах. Это приводит к тому, что гомозиготный по этому заболеванию погибает в детстве.

Плейотропия широко распространена. Изучение действия генов показало, что плейотропным эффектом, очевидно, обладают многие, если не все, гены.

Таким образом, выражение «ген определяет развитие признака» в значительной степени условно, так как действие гена зависит от других генов - от генотипической среды. На проявление действия генов влияют и условия окружающей внешней среды. Следовательно, генотип является системой взаимодействующих генов.

Взаимодействие между аллельными генами осуществляется в виде трех форм: полное доминирование, неполное доминирование и независимое проявление (кодоминирование).

Полное доминирование – когда один доминантный аллель полностью подавляет проявление рецессивного аллеля, например, желтая окраска горошин доминирует над зеленой.

Неполное доминирование наблюдается в том случае, когда один ген из пары аллелей не обеспечивает образование в достаточном для нормального проявления признака его белкового продукта. При этой форме взаимодействия генов все гетерозиготы и гомозиготы значительно отличаются по фенотипу друг от друга. Примером расщепления при неполном доминировании может служить наследование окраски цветков Ночной красавицы.

При скрещивании растений с красными цветками (АА) и растений с белыми (аа) гибриды F1 имеют розовые цветки (Аа). Таким образом, имеет место неполное доминирование; в F2 наблюдается расщепление 1: 2: 1 как по фенотипу, так и по генотипу.

Кроме полного и неполного доминирования известны случаи отсутствия доминантно-рецессивных отношений или кодоминирования. При кодоминировании у гетерозиготных организмов каждый из аллельных генов вызывает формирование в фенотипе контролируемого им признака.

Примером этой формы взаимодействия аллелей служит наследование групп крови человека по системе АВ0, детерминируемых геном I. Существует три аллеля этого гена Io, Ia, Ib, определяющие антигены групп крови. Наследование групп крови иллюстрирует также явление множественного аллелизма: в генофондах популяций человека ген I существует в виде трех разных аллелей, которые комбинируются у отдельных индивидуумов только попарно. До этого примера мы говорили о генах, существующих только в двух разных аллельных формах. Однако многие гены состоят из сотен пар нуклеотидов, так что мутации могут проходить во многих участках гена и порождать множество различных его аллельных форм. Так как в каждой из гомологичной хромосом имеется по одному аллельному гену, то, разумеется, диплоидный организм имеет не более двух из серии аллелей генофонда популяции.

30. Неаллельные взаимодействия генов

Неаллельные гены - это гены, расположенные в различных участках хромосом и кодирующие неодинаковые белки. Неаллельные гены также могут взаимодействовать между собой.

При этом либо один ген обусловливает развитие нескольких признаков, либо, наоборот, один признак проявляется под действием совокупности нескольких генов. Выделяют три формы и взаимодействия неаллельных генов:

комплемментарность;

полимерия.

Комплементарное (дополнительное) действие генов - это вид взаимодействия неаллельных генов, доминантные аллели которых при совместном сочетании в генотипе обусловливают новое фенотипическое проявление признаков. При этом расщепление гибридов F2 по фенотипу может происходить в соотношениях 9:6:1, 9:3:4, 9:7, иногда 9:3:3:1. Примером комплементарности является наследование формы плода тыквы. Наличие в генотипе доминантных генов А или В обусловливает сферическую форму плодов, а рецессивных - удлинённую. При наличии в генотипе одновременно доминантных генов А и В форма плода будет дисковидной. При скрещивании чистых линий с сортами, имеющими сферическую форму плодов, в первом гибридном поколении F1 все плоды будут иметь дисковидную форму, а в поколении F2 произойдёт расщепление по фенотипу: из каждых 16 растений 9 будут иметь дисковидные плоды, 6 - сферические и 1 - удлинённые.

Эпистаз - взаимодействие неаллельных генов, при котором один из них подавляется другим. Подавляющий ген называется эпистатичным, подавляемый - гипостатичным. Если эпистатичный ген не имеет собственного фенотипического проявления, то он называется ингибитором и обозначается буквой I. Эпистатическое взаимодействие неаллельных генов может быть доминантным и рецессивным. При доминантном эпистазе проявление гипостатичного гена (В, b) подавляется доминантным эпистатичным геном (I > В, b). Расщепление по фенотипу при доминантном эпистазе может происходить в соотношении 12:3:1, 13:3, 7:6:3. Рецессивный эпистаз - это подавление рецессивным аллелем эпистатичного гена аллелей гипостатичного гена (i > В, b). Расщепление по фенотипу может идти в соотношении 9:3:4, 9:7, 13:3.

Полимерия - взаимодействие неаллельных множественных генов, однозначно влияющих на развитие одного и того же признака; степень проявления признака зависит от количества генов. Полимерные гены обозначаются одинаковыми буквами, а аллели одного локуса имеют одинаковый нижний индекс.

Полимерное взаимодействие неаллельных генов может быть кумулятивным и некумулятивным. При кумулятивной (накопительной) полимерии степень проявления признака зависит от суммирующего действия генов. Чем больше доминантных аллелей генов, тем сильнее выражен тот или иной признак. Расщепление F2 но фенотипу происходит в соотношении 1:4:6:4:1.

При некумулятивной полимерии признак проявляется при наличии хотя бы одного из доминантных аллелей полимерных генов. Количество доминантных аллелей не влияет на степень выраженности признака. Расщепление по фенотипу происходит в соотношении 15:1.

Пример: цвет кожи у людей, который зависит от четырёх генов.