Закон всемирного тяготения выражается формулой. Гравитация – это совсем не «Закон всемирного тяготения. Гравитация и элементарные частицы

Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации или силами всемирного тяготения . Сила несмирного тяготения проявляется в космосе, Солнечной системе и на Земле.

Закон всемирного тяготения

Ньютон обобщил законы движения небесных тел и выяснил, что сила \(F \) равна:

\[ F = G \dfrac{m_1 m_2}{R^2} \]

где \(m_1 \) и \(m_2 \) - массы взаимодействующих тел, \(R \) - расстояние между ними, \(G \) - коэффициент пропорциональности, который называется гравитационной постоянной . Численное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу взаимодействия между свинцовыми шарами.

Физический смысл гравитационной постоянной вытекает из закона всемирного тяготения. Если \(m_1 = m_2 = 1 \text{кг} \) , \(R = 1 \text{м} \) , то \(G = F \) , т. е. гравитационная постоянная равна силе, с которой притягиваются два тела по 1 кг на расстоянии 1 м.

Численное значение:

\(G = 6,67 \cdot{} 10^{-11} Н \cdot{} м^2/ кг^2 \) .

Силы всемирного тяготения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или если хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для материальных точек и шаров (в этом случае за расстояние принимается расстояние между центрами шаров).

Сила тяжести

Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести . Под действием этой силы все тела приобретают ускорение свбодного падения.

В соответствии со вторым законом Ньютона \(g = F_Т /m \) , следовательно, \(F_T = mg \) .

Если M – масса Земли, R – ее радиус, m – масса данного тела, то сила тяжести равна

\(F = G \dfrac{M}{R^2}m = mg \) .

Сила тяжести всегда направлена к центру Земли. В зависимости от высоты \(h \) над поверхностью Земли и географической широты положения тела ускорение свободного падения приобретает различные значения. На поверхности Земли и в средних широтах ускорение свободного падения равно 9,831 м/с 2 .

Вес тела

В технике и быту широко используется понятие веса тела.

Вес тела обозначается \(P \) . Единица веса - ньютон (Н ). Так как вес равен силе, с которой тело действует на опору, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо определить, чему равна сила реакции опоры.

При этом предполагается, что тело неподвижно относительно опоры или подвеса.

Вес тела и сила тяжести отличаются по своей природе: вес тела является проявлением действия межмолекулярных сил, а сила тяжести имеет гравитационную природу.

Состояние тела, в котором его вес равен нулю, называют невесомостью . Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением, по¬этому в корабле наблюдается состояние невесомости.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

«Физика - 10 класс»

Почему Луна движется вокруг Земли?
Что будет, если Луна остановится?
Почему планеты обращаются вокруг Солнца?

В главе 1 подробно говорилось о том, что земной шар сообщает всем телам у поверхности Земли одно и то же ускорение - ускорение свободного падения. Но если земной шар сообщает телу ускорение, то согласно второму закону Ньютона он действует на тело с некоторой силой. Силу, с которой Земля действует на тело, называют силой тяжести . Сначала найдём эту силу, а затем и рассмотрим силу всемирного тяготения.

Ускорение по модулю определяется из второго закона Ньютона:

В общем случае оно зависит от силы, действующей на тело, и его массы. Так как ускорение свободного падения не зависит от массы, то ясно, что сила тяжести должна быть пропорциональна массе:

Физическая величина - ускорение свободного падения, оно постоянно для всех тел.

На основе формулы F = mg можно указать простой и практически удобный метод измерения масс тел путём сравнения массы данного тела с эталоном единицы массы. Отношение масс двух тел равно отношению сил тяжести, действующих на тела:

Это значит, что массы тел одинаковы, если одинаковы действующие на них силы тяжести.

На этом основано определение масс путём взвешивания на пружинных или рычажных весах. Добиваясь того, чтобы сила давления тела на чашку весов, равная силе тяжести, приложенной к телу, была уравновешена силой давления гирь на другую чашку весов, равной силе тяжести, приложенной к гирям, мы тем самым определяем массу тела.

Сила тяжести, действующая на данное тело вблизи Земли, может считаться постоянной лишь на определенной широте у поверхности Земли. Если тело поднять или перенести в место с другой широтой, то ускорение свободного падения, а следовательно, и сила тяжести изменятся.


Сила всемирного тяготения.

Ньютон был первым, кто строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила всемирного тяготения , действующая между любыми телами Вселенной.

Ньютон пришёл к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы (рис. 3.1) с определённой скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался бы вокруг неё подобно тому, как планеты описывают в небесном пространстве свои орбиты.

Ньютон нашёл эту причину и смог точно выразить её в виде одной формулы - закона всемирного тяготения.

Так как сила всемирного тяготения сообщает всем телам одно и то же ускорение независимо от их массы, то она должна быть пропорциональна массе того тела, на которое действует:

«Тяготение существует ко всем телам вообще и пропорционально массе каждого из них... все планеты тяготеют друг к другу...» И. Ньютон

Но поскольку, например, Земля действует на Луну с силой, пропорциональной массе Луны, то и Луна по третьему закону Ньютона должна действовать на Землю с той же силой. Причём эта сила должна быть пропорциональна массе Земли. Если сила тяготения является действительно универсальной, то со стороны данного тела на любое другое тело должна действовать сила, пропорциональная массе этого другого тела. Следовательно, сила всемирного тяготения должна быть пропорциональна произведению масс взаимодействующих тел. Отсюда вытекает формулировка закона всемирного тяготения.

Закон всемирного тяготения:

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними:

Коэффициент пропорциональности G называется гравитационной постоянной .

Гравитационная постоянная численно равна силе притяжения между двумя материальными точками массой 1 кг каждая, если расстояние между ними равно 1 м. Ведь при массах m 1 = m 2 = 1 кг и расстоянии r = 1 м получаем G = F (численно).

Нужно иметь в виду, что закон всемирного тяготения (3.4) как всеобщий закон справедлив для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 3.2, а).

Можно показать, что однородные тела, имеющие форму шара (даже если их нельзя считать материальными точками, рис. 3.2, б), также взаимодействуют с силой, определяемой формулой (3.4). В этом случае r - расстояние между центрами шаров. Силы взаимного притяжения лежат на прямой, проходящей через центры шаров. Такие силы называются центральными . Тела, падение которых на Землю мы обычно рассматриваем, имеют размеры, много меньшие, чем земной радиус (R ≈ 6400 км).

Такие тела можно, независимо от их формы, рассматривать как материальные точки и определять силу их притяжения к Земле с помощью закона (3.4), имея в виду, что r есть расстояние от данного тела до центра Земли.

Брошенный на Землю камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадёт наконец на Землю. Если его бросить с большей скоростью, то он упадёт дальше». И. Ньютон

Определение гравитационной постоянной.


Теперь выясним, как можно найти гравитационную постоянную. Прежде всего заметим, что G имеет определённое наименование. Это обусловлено тем, что единицы (и соответственно наименования) всех величин, входящих в закон всемирного тяготения, уже были установлены ранее. Закон же тяготения даёт новую связь между известными величинами с определёнными наименованиями единиц. Именно поэтому коэффициент оказывается именованной величиной. Пользуясь формулой закона всемирного тяготения, легко найти наименование единицы гравитационной постоянной в СИ: Н м 2 /кг 2 = м 3 /(кг с 2).

Для количественного определения G нужно независимо определить все величины, входящие в закон всемирного тяготения: обе массы, силу и расстояние между телами.

Трудность состоит в том, что гравитационные силы между телами небольших масс крайне малы. Именно по этой причине мы не замечаем притяжение нашего тела к окружающим предметам и взаимное притяжение предметов друг к другу, хотя гравитационные силы - самые универсальные из всех сил в природе. Два человека массами по 60 кг на расстоянии 1 м друг от друга притягиваются с силой всего лишь порядка 10 -9 Н. Поэтому для измерения гравитационной постоянной нужны достаточно тонкие опыты.

Впервые гравитационная постоянная была измерена английским физиком Г. Кавендишем в 1798 г. с помощью прибора, называемого крутильными весами. Схема крутильных весов показана на рисунке 3.3. На тонкой упругой нити подвешено лёгкое коромысло с двумя одинаковыми грузиками на концах. Рядом неподвижно закреплены два тяжёлых шара. Между грузиками и неподвижными шарами действуют силы тяготения. Под влиянием этих сил коромысло поворачивается и закручивает нить до тех пор, пока возникающая сила упругости не станет равна гравитационной силе. По углу закручивания можно определить силу притяжения. Для этого нужно только знать упругие свойства нити. Массы тел известны, а расстояние между центрами взаимодействующих тел можно непосредственно измерить.

Из этих опытов было получено следующее значение для гравитационной постоянной:

G = 6,67 10 -11 Н м 2 /кг 2 .

Лишь в том случае, когда взаимодействуют тела огромных масс (или по крайней мере масса одного из тел очень велика), сила тяготения достигает большого значения. Например, Земля и Луна притягиваются друг к другу с силой F ≈ 2 10 20 Н.


Зависимость ускорения свободного падения тел от географической широты.


Одна из причин увеличения ускорения свободного падения при перемещении точки, где находится тело, от экватора к полюсам, состоит в том, что земной шар несколько сплюснут у полюсов и расстояние от центра Земли до её поверхности у полюсов меньше, чем на экваторе. Другой причиной является вращение Земли.


Равенство инертной и гравитационной масс.


Самым поразительным свойством гравитационных сил является то, что они сообщают всем телам, независимо от их масс, одно и то же ускорение. Что бы вы сказали о футболисте, удар которого одинаково ускорял бы обыкновенный кожаный мяч и двухпудовую гирю? Каждый скажет, что это невозможно. А вот Земля является именно таким «необыкновенным футболистом» с той только разницей, что действие её на тела не носит характера кратковременного удара, а продолжается непрерывно миллиарды лет.

В теории Ньютона масса является источником поля тяготения. Мы находимся в поле тяготения Земли. В то же время мы также являемся источниками поля тяготения, но в силу того, что наша масса существенно меньше массы Земли, наше поле намного слабее и окружающие предметы на него не реагируют.

Необыкновенное свойство гравитационных сил, как мы уже говорили, объясняется тем, что эти силы пропорциональны массам обоих взаимодействующих тел. Масса тела, которая входит во второй закон Ньютона, определяет инертные свойства тела, т. е. его способность приобретать определённое ускорение под действием данной силы. Это инертная масса m и.

Казалось бы, какое отношение она может иметь к способности тел притягивать друг друга? Масса, определяющая способность тел притягиваться друг к другу, - гравитационная масса m r .

Из механики Ньютона совсем не следует, что инертная и гравитационная массы одинаковы, т. е. что

m и = m r . (3.5)

Равенство (3.5) является непосредственным следствием из опыта. Оно означает, что можно говорить просто о массе тела как о количественной мере как инертных, так и гравитационных его свойств.

Закон всемирного тяготения был открыт еще в XVII веке и дал колоссальное развитие для физики того времени. Так кто открыл этот закон, и почему он так важен для науки?

Определение закона всемирного тяготения

Датский астроном Тихо Браге, долгие годы наблюдавший за движением планет, накопил огромное количество интересных данных, но не сумел их обработать. Зато это смог сделать его ученик Иоганн Кеплер. Используя идею Коперника о гелиоцентрической системе и результаты наблюдений Тихо Браге, Кеплер установил законы движения планет вокруг Солнца. Однако и он не смог объяснить динамику этого движения, то есть почему планеты движутся именно по таким законам.

И вот тогда настало время Исаака Ньютона, уже открывшего три основных закона динамики. Ньютон предположил, что ряд явлений, казалось бы не имеющих между собой ничего общего, вызваны одной причиной – силами тяготения. Проведя многочисленные расчеты, ученый пришел к выводу, что все тела в природе притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Рис. 1. Портрет Ньютона.

Вот как Ньютон пришел к этому заключению. Из второго закона Ньютона (динамики) следует, что ускорение, которое получает тело под действием силы, обратно пропорционально массе тела: $a ={ F \over m}$, но ускорение свободного падения $g = 9,8 {м \over с^2}$ не зависит от массы тела. И это представляется возможным только в том случае, если сила, с которой Земля притягивает тело, изменяется пропорционально массе тела.

По третьему закону Ньютона силы, с которыми взаимодействуют тела, равны по модулю. Если сила, действующая на одно тело, пропорциональна массе этого тела, то равная ей сила, действующая на второе тело, очевидно, пропорциональна массе второго тела.

Но силы, действующие на оба тела, равны, следовательно они пропорциональны массе как первого, так и второго тела.

Исаак Ньютон открыл этот закон в возрасте 23 лет, но на протяжении девяти лет не опубликовал его, так как имевшиеся тогда неверные данные о расстоянии между Землей и Луной не подтверждали его идею. Лишь в 1667 году, после уточнения этого расстояния, закон всемирного тяготения был наконец отдан в печать.

Вот формулировка и определение закона всемирного тяготения: все тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. Эту силу называют силой тяготения.

Рис. 2. Формула закона всемирного тяготения.

Сила тяготения очень мала и становится заметной только тогда, когда хотя бы одно из взаимодействующих тел имеет большую массу (планета, звезда).

Рис. 3. Планеты солнечной системы.

Из этого закона следует еще один существенный признак массы: масса отражает свойство тела притягиваться к другим телам и определяет силу этого притяжения.

Применение закона всемирного тяготения

Как и любые другие законы, закон всемирного тяготения имеет определенные границы применимости. Он справедлив для:

  • материальных точек;
  • тел, имеющих форму шара;
  • шара большого радиуса, взаимодействующего с телами, размеры которых много меньше размеров шара.

Закон неприменим, например, для взаимодействия бесконечного стержня и шара. В этом случае сила тяготения обратно пропорциональна только расстоянию, а не квадрату расстояния. А, скажем, сила притяжения между телом и бесконечной плоскостью вообще не зависит от расстояния.

Что мы узнали?

В 9 классе очень важной является тема всемирного тяготения. В этой статье кратко рассказывается про открытие и применение этого закона, а также об ученых, которые внесли свой вклад для развития этого закона.

Тест по теме

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 125.

Все мы ходим по Земле потому, что она нас притягивает. Если бы Земля не притягивала все находящиеся на ее поверхности тела, то мы, оттолкнувшись от нее, улетели бы в космос. Но этого не происходит, и всем известно о существовании земного притяжения.

Притягиваем ли мы Землю? Притягивает Луна!

А притягиваем ли мы сами к себе Землю? Смешной вопрос, правда? Но давайте разберемся. Вы знаете, что такое приливы и отливы в морях и океанах? Каждый день вода уходит от берегов, неизвестно где шляется несколько часов, а потом, как ни в чем не бывало, возвращается обратно.

Так вот вода в это время находится не неизвестно где, а примерно посредине океана. Там образуется что-то наподобие горы из воды. Невероятно, правда? Вода, которая имеет свойство растекаться, сама не просто стекается, а еще и образует горы. И в этих горах сосредоточена огромная масса воды.

Просто прикиньте весь объем воды, который отходит от берегов во время отливов, и вы поймете, что речь идет о гигантских количествах. Но раз такое происходит, должна же быть какая-то причина. И причина есть. Причина кроется в том, что эту воду притягивает к себе Луна.

Вращаясь вокруг Земли, Луна проходит над океанами и притягивает к себе океанические воды. Луна вращается вокруг Земли, потому что она притягивается Землей. Но, выходит, что она и сама при этом притягивает к себе Землю. Земля, правда, для нее великовата, но ее влияние оказывается достаточным для перемещения воды в океанах.

Сила и закон всемирного тяготения: понятие и формула

А теперь пойдем дальше и подумаем: если два громадных тела, находясь неподалеку, оба притягивают друг друга, не логично ли предположить, что и тела поменьше тоже будут притягивать друг друга? Просто они намного меньше и сила их притяжения будет маленькой?

Оказывается, что такое предположение абсолютно верно. Абсолютно между всеми телами во Вселенной существуют силы притяжения или, другими словами, силы всемирного тяготения.

Первым такое явление обнаружил и сформулировал в виде закона Исаак Ньютон. Закон всемирного тяготения гласит: все тела притягиваются друг к другу, при этом сила их притяжения прямо пропорциональна массе каждого из тел и обратно пропорциональна квадрату расстояния между ними:

F = G * (m_1 * m_2) / r^2 ,

где F величина вектора силы притяжения между телами, m_1 и m_2 массы этих тел, r расстояние между телами, G гравитационная постоянная.

Гравитационная постоянная численно равна силе, которая существует между телами массами 1 кг, находящимися на расстоянии 1 метр. Эта величина найдена экспериментально: G=6,67*〖10〗^(-11) Н* м^2⁄〖кг〗^2 .

Возвращаясь к нашему исходному вопросу: «притягиваем ли мы Землю?», мы можем с уверенностью ответить: «да». Согласно третьему закону Ньютона мы притягиваем Землю ровно с такой же силой, с какой Земля притягивает нас. Силу эту можно рассчитать из закона всемирного тяготения.

А согласно второму закону Ньютона воздействие тел друг на друга какой-либо силой выражается в виде придаваемого ими друг другу ускорения. Но придаваемое ускорение зависит от массы тела.

Масса Земли велика, и она придает нам ускорение свободного падения. А наша масса ничтожно мала по сравнению с Землей, и поэтому ускорение, которое мы придаем Земле, практически равно нулю. Именно поэтому мы притягиваемся к Земле и ходим по ней, а не наоборот.

Ньютона закон тяготения

закон всемирного тяготения, один из универсальных законов природы; согласно Н. з. т. все материальные тела притягивают друг друга, причём величина силы тяготения не зависит от физических и химических свойств тел, от состояния их движения, от свойств среды, где находятся тела. На Земле тяготение проявляется прежде всего в существовании силы тяжести, являющейся результатом притяжения всякого материального тела Землёй. С этим связан термин «гравитация» (от лат. gravitas - тяжесть), эквивалентный термину «тяготение».

Гравитационное взаимодействие в соответствии с Н. з. т. играет главную роль в движении звёздных систем типа двойных и кратных звёзд, внутри звёздных скоплений и галактик. Однако гравитационные поля внутри звёздных скоплений и галактик имеют очень сложный характер, изучены ещё недостаточно, вследствие чего движения внутри них изучают методами, отличными от методов небесной механики (см. Звёздная астрономия). Гравитационное взаимодействие играет также существенную роль во всех космических процессах, в которых участвуют скопления больших масс вещества. Н. з. т. является основой при изучении движения искусственных небесных тел, в частности искусственных спутников Земли и Луны, космических зондов. На Н. з. т. опирается Гравиметрия . Силы притяжения между обычными макроскопическими материальными телами на Земле могут быть обнаружены и измерены, но не играют сколько-нибудь заметной практической роли. В микромире силы притяжения ничтожно малы по сравнению с внутримолекулярными и внутриядерными силами.

Ньютон оставил открытым вопрос о природе тяготения. Не было объяснено также и предположение о мгновенном распространении тяготения в пространстве (т. е. предположение о том, что с изменением положений тел мгновенно изменяется и сила тяготения между ними), тесно связанное с природой тяготения. Трудности, связанные с этим, были устранены лишь в теории тяготения Эйнштейна, представляющей собой новый этап в познании объективных законов природы.

Лит.: Исаак Ньютон. 1643-1727. Сб. ст. к трехсотлетию со дня рождения, под ред. акад. С. И. Вавилова, М. - Л., 1943; Берри А., Краткая история астрономии, пер. с англ., М. - Л., 1946; Субботин М. Ф., Введение в теоретическую астрономию, М., 1968.

Ю. А. Рябов.

Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Ньютона закон тяготения" в других словарях:

    - (всемирного тяготения закон), см. в ст. (см. ТЯГОТЕНИЕ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    НЬЮТОНА ЗАКОН ТЯГОТЕНИЯ, то же, что всемирного тяготения закон … Современная энциклопедия

    То же, что всемирного тяготения закон … Большой Энциклопедический словарь

    Ньютона закон тяготения - НЬЮТОНА ЗАКОН ТЯГОТЕНИЯ, то же, что всемирного тяготения закон. … Иллюстрированный энциклопедический словарь

    НЬЮТОНА ЗАКОН ТЯГОТЕНИЯ - то же, что (см.) …

    То же, что всемирного тяготения закон. * * * НЬЮТОНА ЗАКОН ТЯГОТЕНИЯ НЬЮТОНА ЗАКОН ТЯГОТЕНИЯ, то же, что всемирного тяготения закон (см. ВСЕМИРНОГО ТЯГОТЕНИЯ ЗАКОН) … Энциклопедический словарь

    закон тяготения Ньютона - Niutono gravitacijos dėsnis statusas T sritis fizika atitikmenys: angl. Newton’s law of gravitation vok. Newtonsches Gravitationsgesetz, n; Newtonsches Massenanziehungsgesetz, n rus. закон гравитации Ньютона, m; закон тяготения Ньютона, m pranc.… … Fizikos terminų žodynas

    Гравитация (всемирное тяготение, тяготение) (от лат. gravitas «тяжесть») дальнодействующее фундаментальное взаимодействие в природе, которому подвержены все материальные тела. По современным данным, является универсальным взаимодействием в том… … Википедия

    ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ - (Ньютона закон тяготения) все материальные тела притягивают друг друга с силами, прямо пропорциональными их массам и обратно пропорциональными квадрату расстояния между ними: где F модуль силы тяготения, m1 и m2, массы взаимодействующих тел, R… … Большая политехническая энциклопедия

    Закон всемирного тяготения - закон тяготения И. Ньютона (1643 1727) в классической механике, согласно которому сила гравитационного притяжения двух тел с массами m1 и m2 обратно пропорциональна квадрату расстояния r между ними; коэффициент пропорциональности G гравитационная … Концепции современного естествознания. Словарь основных терминов