Подключение трехцветного светодиода к ардуино. Подключение и управление светодиодной лентой к arduino. Собрать схему на макетной плате

Для управления этими устройствами используется RGB-контроллер. Но, кроме него, в последние годы применяется плата Arduino.

Ардуино – принцип действия

плата Arduino

Плата Ардуино – это устройство, на котором установлен программируемый микроконтроллер. К нему подключены различные датчики, органы управления или encoder и, по заданному скетчу (программе), плата управляет моторами, светодиодами и прочими исполнительными механизмами, в том числе и другими платами Ардуино по протоколу SPI. Контроль устройства может осуществляться через дистанционный пульт, модуль Bluetooth, HC-06, Wi-Fi, ESP или internet, и кнопками. Одни из самых популярных плат – Arduino Nano и Arduino Uno, а также Arduino Pro Mini – устройство на базе микроконтроллера ATmega 328


Внешний вид Arduino Pro Mini
Внешний вид Arduino Uno
Внешний вид Arduino micro

Программирование осуществляется в среде Ардуино с открытым исходным кодом, установленным на обычном компьютере. Программы загружаются через USB.

Принцип управления нагрузкой через Ардуино


управление Arduino

На плате есть много выходов, как цифровых, имеющих два состояния – включено и выключено, так и аналоговых, управляемых через ШИМ-controller с частотой 500 Гц.

Но выходы рассчитаны на ток 20 – 40 мА с напряжением 5 В. Этого хватит для питания индикаторного RGB-светодиода или матричного светодиодного модуля 32×32 мм. Для более мощной нагрузки это недостаточно.

Для решения подобной проблемы во многих проектах нужно подключить дополнительные устройства:

  • Реле. Кроме отдельных реле с напряжением питания 5В есть целые сборки с разным количеством контактов, а также со встроенными пускателями.
  • Усилители на биполярных транзисторах. Мощность таких устройств ограничена током управления, но можно собрать схему из нескольких элементов или использовать транзисторную сборку.
  • Полевые или MOSFET-транзисторы. Они могут управлять нагрузкой с токами в несколько ампер и напряжением до 40 – 50 В. При подключении мосфета к ШИМ и электродвигателю или к другой индуктивной нагрузке, нужен защитный диод. При подключении к светодиодам или LED-лампам в этом нет необходимости.
  • Платы расширения.

Подключение светодиодной ленты к Ардуино


подключение светодиодной ленты к Arduino

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Arduino Nano могут управлять не только электродвигателями. Они используются также для светодиодных лент. Но так как выходные ток и напряжение платы недостаточны для прямого подключения к ней полосы со светодиодами, то между контроллером и светодиодной лентой необходимо устанавливать дополнительные приспособления.

Через реле


Подключение через реле

Реле подключается к устройству на цифровой выход. Полоса, управляемая с его помощью имеет только два состояния – включенная и выключенная. Для управления red-blue-green ленточкой необходимы три реле. Ток, который может контролировать такое устройство, ограничен мощностью катушки (маломощная катушка не в состоянии замыкать большие контакты). Для подсоединения большей мощности используются релейные сборки.

С помощью биполярного транзистора


Подключение с помощью транзистора

Для усиления выходного тока и напряжения можно использовать биполярный транзистор. Он выбирается по току и напряжению нагрузки. Ток управления не должен быть выше 20 мА, поэтому подается через токоограничивающее сопротивление 1 – 10 кОм.

Транзистор лучше применять n-p-n с общим эмиттером. Для большего коэффициента усиления используется схема с несколькими элементами или транзисторная сборка (микросхема-усилитель).

С помощью полевого транзистора

Кроме биполярных, для управления полосами используются полевые транзисторы. Другое название этих приборов – МОП или MOSFET-transistor.

Такой элемент, в отличие от биполярного, управляется не током, а напряжением на затворе. Это позволяет малому току затвора управлять большими токами нагрузки – до десятков ампер.

Подключается элемент через токоограничивающее сопротивление. Кроме того, он чувствителен к помехам, поэтому выход контроллера следует соединить с массой резистором в 10 кОм.

С помощью плат расширения


Подключение Arduino с помощью плат расширения

Кроме реле и транзисторов используются готовые блоки и платы расширения.

Это может быть Wi-Fi или Bluetooth, драйвер управления электродвигателем, например, модуль L298N или эквалайзер. Они предназначены для управления нагрузками разной мощности и напряжения. Такие устройства бывают одноканальными – могут управлять только монохромной лентой, и многоканальными – предназначены для устройств RGB и RGBW, а также лент со светодиодами WS 2812.

Пример программы


Arduino и светодиодная лента

Платы Ардуино способны управлять светодиодными конструкциями по заранее заданным программам. Их библиотеки можно скачать с официально сайта , найти в интернете или написать новый sketch (code) самому. Собрать такое устройство можно своими руками.

Вот некоторые варианты использования подобных систем:

  • Управление освещением. С помощью датчика освещения включается свет в комнате как сразу, так и с постепенным нарастанием яркости по мере захода солнца. Включение может также производиться через wi-fi, с интеграцией в систему «умный дом» или соединением по телефону.
  • Включение света на лестнице или в длинном коридоре. Очень красиво смотрится диодная подсветка каждой ступеньки в отдельность. При подключении к плате датчика движения, его срабатывание вызовет последовательное, с задержкой времени включение подсветки ступеней или коридора, а отключение этого элемента приведет к обратному процессу.
  • Цветомузыка. Подав на аналоговые входы звуковой сигнал через фильтры, на выходе получится цветомузыкальная установка.
  • Моддинг компьютера. С помощью соответствующих датчиков и программ цвет светодиодов может зависеть от температуры или загрузки процессора или оперативной памяти. Работает такое устройство по протоколу dmx 512.
  • Управление скоростью бегущих огней при помощи энкодера. Подобные установки собираются на микросхемах WS 2811, WS 2812 и WS 2812B.

Видеоинструкция

В прошлый раз был рассмотрен способ подключения светодиодной ленты к ардуино через драйвер L298. Управление цветом осуществлялось программно - функция Random. Теперь пришла пора разобраться, как управлять цветом светодиодной ленты на основании показаний датчика температуры и влажности DHT 11.

За основу взят пример подключения светодиодной ленты через драйвер L298. Плюсом ко всему в пример добавлен дисплей LCD 1602, который будет отображать показания датчика DHT 11.

Для проекта понадобятся следующие элементы Ардуино:

  1. Плата Ардуино УНО.
  2. Дисплей LCD 1602 + I2C.
  3. Датчик температуры и влажности DHT
  4. Светодиодная лента.
  5. Драйвер L298.
  6. Блок питания 9-12В.
  7. Корпус для ардуино и дисплея (по желанию).

Первым делом посмотрим на принципиальную схему (рис. 1). На ней можно увидеть, как нужно подключить все вышеперечисленные элементы. В сборке схемы и подключении ничего сложного нет, однако стоит упомянуть об одном нюансе, о котором большинство людей забывают, и в итоге получают неправильные результаты работы LED – ленты с Ардуино.

Рисунок 1. Принципиальная схема подключения Arduino и светодиодной ленты с датчиком DHT 11

Во избежание некорректной работы светодиодной ленты (мерцание, несоответствие цветов, неполное свечение и т.д.), питание всей схемы необходимо сделать общим, т.е. объединить контакты GND (земля) контроллера Ардуино и драйвера L298 (светодиодной ленты). Как это сделать, можно посмотреть на схеме.

Пару слов о подключении датчика влажности. Если покупать голый DHT 11, без обвязки, то между первым и вторым контактами, 5В и Data, соответственно, нужно впаять резистор номиналом 5-10 кОм. Диапазон измерения температуры и влажности написан на обратной стороне корпуса датчика DHT 11. Температура: 0-50 градусов по Цельсию. Влажность: 0-80%.


Рисунок 2. Правильное подключение датчика влажности DHT 11

После сборки всех элементов проекта по схеме, необходимо написать программный код, который заставит все это работать так, как нам нужно. А нужно нам, чтобы светодиодная лента изменяла цвет в зависимости от показаний датчика DHT 11 (влажности).

Для программирования датчика DHT 11 понадобится дополнительная библиотека.

Код программы Arduino и RGB – лента. Изменение цвета ленты в зависимости от влажности.

#include #include //библиотека для работы с дисплеем LCD 1602 #include //библиотека для работы с датчиком влажности и температуры DHT 11 int chk; //переменная будет хранить все данные с датчика DHT11 int hum; //переменная будет хранить показания влажности с датчика DHT11 dht11 DHT; //объект типа DHT #define DHT11_PIN 4 //контакт Data датчика DHT11 подключен на вход 4 #define LED_R 9 // пин для канала R #define LED_G 10 // пин для канала G #define LED_B 11 // пин для канала B //переменные будут хранить значения цветов //при смешивании всех трех цветов будет получаться необходимый цвет int led_r=0, led_g=0, led_b=0; //объявление объекта дисплея с адресом 0х27 //не забываем использовать в проекте дисплей через плату I2C LiquidCrystal_I2C lcd(0x27,16,2); void setup() { //создание дисплея lcd.init(); lcd.backlight(); // объявляем пины выходами pinMode(LED_R, OUTPUT); pinMode(LED_G, OUTPUT); pinMode(LED_B, OUTPUT); } void loop() { chk = DHT.read(DHT11_PIN);//читаем данные с датчика DHT11 //вывод данных на дисплей lcd.print("Temp: "); lcd.print(DHT.temperature, 1); lcd.print(" C"); lcd.setCursor(0,1); lcd.print("Hum: "); lcd.print(DHT.humidity, 1); lcd.print(" %"); delay(1500); //для корректной работы датчика нужна задержка на опрос lcd.clear(); hum = DHT.humidity; //берем показания влажности //в диапозоне от 19 до 30% влажности выдать зеленый цвет if ((hum >= 19) && (hum <= 30)) { led_r = 1; led_g = 255; led_b = 1; } //в диапозоне от 31 до 40% влажности выдать красный цвет if ((hum >= 31) && (hum <= 40)) { led_r = 255; led_g = 1; led_b = 1; } //в диапозоне от 41 до 49% влажности выдать синий цвет if ((hum >= 41) && (hum <= 49)) { led_r = 1; led_g = 1; led_b = 255; } // подача сигналов цвета на выхода analogWrite(LED_R, led_r); analogWrite(LED_G, led_g); analogWrite(LED_B, led_b); }

Метки: Метки

На предыдущем уроке мы уже попробовали . Теперь же разберемся с многоцветным светодиодом, который часто называют сокращенно: RGB-светодиод .

RGB — это аббревиатура, которая расшифровывается как: Red — красный, Green — зеленый, Blue — синий. То есть внутри этого устройства размещается сразу три отдельных светодиода. В зависимости от типа, RGB-светодиод может иметь общий катод или общий анод.

Смешение цветов

Чем RGB-светодиод, лучше трех обычных? Всё дело в свойстве нашего зрения смешивать свет от разных источников, размещенных близко друг к другу. Например, если мы поставим рядом синий и красный светодиоды, то на расстоянии несколько метров их свечение сольется, и глаз увидит одну фиолетовую точку. А если добавим еще и зеленый, то точка покажется нам белой. Именно так работают мониторы компьютеров, телевизоры и уличные экраны.

Матрица телевизора состоит из отдельно стоящих точек разных цветов. Если взять лупу и посмотреть через нее на включенный монитор, то эти точки можно легко увидеть. А вот на уличном экране точки размещаются не очень плотно, так что их можно различить невооруженным глазом. Но с расстояния несколько десятков метров эти точки неразличимы.

Получается, что чем плотнее друг к другу стоят разноцветные точки, тем меньшее расстояние требуется глазу чтобы смешивать эти цвета. Отсюда вывод: в отличие от трех отдельностоящих светодиодов, смешение цветов RGB-светодиода заметно уже на расстоянии 30-70 см. Кстати, еще лучше себя показывает RGB-светодиод с матовой линзой.

Во многих приложениях, как любительских, так и профессиональных, иногда бывает необходимым генерировать цвета различных оттенков. Использование отдельных одноцветных светодиодов в таких случаях неоправданно конструктивно и экономически. Поэтому для таких целей были разработаны RGB-светодиоды.



RGB-светодиод (аббревиатура означает RED, GREEN, BLUE) является сочетанием кристаллов, способных генерировать красный, зеленый и синий цвета. Благодаря такому сочетанию данные светодиоды могут воспроизводить 16 миллионов оттенков света. Управлять RGB-светодиодами несложно, и они без проблем могут использоваться в проектах с Arduino. В данном материале будет показан пример управления RGB-светодиодом с помощью Arduino.


Поскольку RGB-светодиод, как было отмечено выше, является сочетанием кристаллов трех разных базовых цветов, то схемотехнически он изображается как три светодиода. Конструктивно такой светодиод имеет один общий вывод и три вывода для каждого цвета. Ниже показана схема подключения RGB-светодиода к Arduino. Также на схеме имеется буквенно-числовой ЖК-дисплей 16×2, потенциометры и последовательно соединенные с линиями RGB-светодиода резисторы. Эти резисторы (R1 = 100 Ом, R2 = 270 Ом, R3 = 330 Ом) ограничивают ток светодиодов, чтобы они не вышли из строя. Переменные резисторы (потенциометры) VR1-VR3 сопротивлением 10 КОм используются для управления интенсивностью свечения RGB-светодиода, то есть с помощью них можно задавать цвет светодиода, меняя интенсивность красного, зеленого и синего кристаллов. Потенциометр VR1 соединен с аналоговым входом A0, VR2 с аналоговым входом A1, а VR3 с аналоговым входом A2.



ЖК-дисплей в данном случае используется для отображения значения цвета и шестнадцатеричного значения цветового кода. Значение цветового кода отображается в 1-й строке ЖК-дисплея (в виде Rxxx Gxxx Bxxx, где xxx представляет собой числовое значение), а шестнадцатеричный код отображается во 2-й строке ЖК-дисплея (в виде HEXxxxxxx). Резистор R4 сопротивлением 100 Ом применяется для ограничения тока, прикладываемого к подсветке ЖК-дисплея, а для регулировки контрастности ЖК-дисплея используется переменный резистор VR4 сопротивлением 10 КОм.


Ниже приведен код (скетч), позволяющий управлять изменением цвета RGB-светодиода с помощью платы Arduino и подключенными к ней потенциометрами.


#include // библиотека для ЖК-дисплея LiquidCrystal lcd(7, 6, 5, 4, 3, 2); // линии Arduino для подключения ЖК-дисплея int Radj; int Gadj; int Badj; int Rval=0; int Gval=0; int Bval=0; int R = 9; int G = 10; int B = 11; void setup() { pinMode(R, OUTPUT); // Линия 9 направлена на выход pinMode(G, OUTPUT); // Линия 10 направлена на выход pinMode(B, OUTPUT); // Линия 11 направлена на выход lcd.begin(16,2); // Инициализация дисплея delay(1); lcd.setCursor(0,0); lcd.print("RGB COLOUR"); lcd.setCursor(4,1); lcd.print("GENERATOR"); delay(2000); lcd.setCursor(0, 0); lcd.print(" R G B "); lcd.setCursor(3,1); lcd.print("HEX= "); } void loop() { Radj = analogRead(0); Gadj = analogRead(1); Badj = analogRead(2); Rval=Radj/4; // Convert the range from (0-1023) to (0-255) Gval=Gadj/4; // Convert the range from (0-1023) to (0-255) Bval=Badj/4; // Convert the range from (0-1023) to (0-255) lcd.setCursor(2,0); if (Rval<10) { lcd.setCursor(2,0); lcd.print("00"); lcd.print(Rval); } else if(Rval<100) { lcd.setCursor(2,0); lcd.print("0"); lcd.print(Rval); } else { lcd.setCursor(2,0); lcd.print(Rval); } lcd.setCursor(8,1); if (Rval<16) { lcd.print("0"); lcd.print(Rval, 16); } else { lcd.print(Rval, 16); } lcd.setCursor(7,0); if (Gval<10) { lcd.setCursor(7,0); lcd.print("00"); lcd.print(Gval); } else if(Gval<100) { lcd.setCursor(7,0); lcd.print("0"); lcd.print(Gval); } else { lcd.setCursor(7,0); lcd.print(Gval); } lcd.setCursor(10,1); if (Gval<16) { lcd.print("0"); lcd.print(Gval, 16); } else { lcd.print(Gval, 16); } lcd.setCursor(12,0); if (Bval<10) { lcd.setCursor(12,0); lcd.print("00"); lcd.print(Bval); } else if(Bval<100) { lcd.setCursor(12,0); lcd.print("0"); lcd.print(Bval); } else { lcd.setCursor(12,0); lcd.print(Bval); } lcd.setCursor(12,1); if (Bval<16) { lcd.print("0"); lcd.print(Bval, 16); } else { lcd.print(Bval, 16); } analogWrite(R, Rval); // ШИМ-выход для красного цвета analogWrite(G, Gval); // ШИМ-выход для зеленого цвета analogWrite(B, Bval); // ШИМ-выход для синего цвета }

Широтно-импульсная модуляция (ШИМ, PWM) - веселая штука, и особенно прикольно с ее помощью управлять сервомоторами, однако сегодня мы применим ее к трехцветному светодиоду. Это позволит нам управлять его цветом и получить некое подобие красоты.

ШИМ

Гениально определение ШИМ сформулировано в Википедии , поэтому я просто скопипащу его оттуда: "ШИМ - приближение желаемого сигнала (многоуровневого или непрерывного) к действительным бинарным сигналам (с двумя уровнями - вкл / выкл ), так, что, в среднем, за некоторый отрезок времени, их значения равны. <...> ШИМ есть импульсный сигнал постоянной частоты и переменной скважности, то есть отношения периода следования импульса к его длительности. С помощью задания скважности (длительности импульсов) можно менять среднее напряжение на выходе ШИМ . "


Теперь разберемся, что это значит. Пусть есть обычный такой прямоугольный сигнал:




Он имеет фиксированную частоту и скважность 50%. Это означает, что половину периода напряжение максимально, а другую половину оно равно нулю. Проинтегрировав этот сигнал за период, мы увидим, что его энергия равна половине максимальной. Это будет эквивалентно тому, как если бы мы все время подавали половину напряжения.


Если у нас максимальное напряжение равно 5 В, то напряжение, получаемое на выходе ШИМ равно скважность умножить на 5 В (и делить на 100% чтобы формал-nazi не привязывались):


Arduino позволяет записать на ШИМ-выход значение от 0 до 255, а это значит, что мы можем получить напряжение с дискретностью примерно 20 мВ.


Трехцветный светодиод

Вот он, четырехногий красавец:


Самая длинная нога - это общий анод, а все остальные - это катоды, каждый отвечает за свой цвет: (смотрим на рисунок) самая нижняя - красный, вторая сверху - зеленый, самая верхняя - синий.

Если подать на длинную ногу +5В, а на все остальные 0В, то получится белый свет (умоляю, предохраняйтесь - ставьте ограничивающие резисторы!). Насколько он белый, можно судить по следующему видео:


Но получать белый цвет на нем как раз-таки неинтересно. Посмотрим, как заставить его переливаться разными цветами.

ШИМ на Arduino

Частота ШИМ на Arduino - примерно 490 Гц. На плате Arduino UNO выводы, которые могут быть использованы для ШИМ - 3,5,6, 9, 10 и 11. На плате к этому есть подсказка - шелкографией перед номерами ШИМ-выводов есть тильда или диез.

Нет ничего проще, чем управлять ШИМ на Arduino! Для этого используется одна единственная функция analogWrite(pin, value) , где pin - номер вывода, а value - значение от 0 до 255. При этом ничего не надо писать в void setup() !

Подробнее про это на английском языке можно почитать и .

Совсем немного работаем

Сделаем так, чтобы светодиод переливался разными цветами. Пусть один цвет плавно гаснет, в то время как другой разгорается. Поочередно будем менять пару цветов, и цвет будет переходить по кругу из красного в зеленый, из зеленого в синий, из синего в красный.

Соберем незамысловатую схему:


И напишем незамысловатый код:

//обзываем выводы соответственно цвету
int REDpin = 9;
int GREENpin = 10;
int BLUEpin = 11;

void setup (){}

void loop (){
for (int value = 0 ; value <= 255; value +=1) {
//яркость красного уменьшается
analogWrite (REDpin, value);
//яркость зеленого увеличивается
analogWrite (GREENpin, 255-value);
//синий не горит
analogWrite (BLUEpin, 255);
//пауза
delay (30);
}

for (int value = 0 ; value <= 255; value +=1) {
//красный не горит
analogWrite (REDpin, 255);
//яркость зеленого уменьшается
analogWrite (GREENpin, value);
//яркость синего увеличивается
analogWrite (BLUEpin, 255-value);
//пауза
delay (30);
}

for (int value = 0 ; value <= 255; value +=1) {
//яркость красного увеличивается
analogWrite (REDpin, 255-value);
//зеленый не горит
analogWrite (GREENpin, 255);
//яркость синего уменьшается
analogWrite (BLUEpin, value);
//пауза
delay (30);
}
}