Что такое искусственный интеллект (ИИ): определение понятия простыми словами.

Самый известный способ определить, есть ли у машины интеллект - это тест Тьюринга, предложенный в 1950 году математиком Аланом Тьюрингом. Во время теста человек разговаривает с компьютером и должен определить, кто ведёт беседу - машина или человек. Если машина способна имитировать разговор - значит, она обладает интеллектом. Сегодня тест Тьюринга уже : прошлым летом его прошёл чат-бот Eugene Goostman, да и тест постоянно критикуют. Look At Me собрал восемь других способов определить, есть ли у машины интеллект.

Тест Лавлейс 2.0


Этот тест назван в честь Ады Лавлейс, математика из XIX века, которую считают первым в истории программистом. Он призван определить наличие интеллекта у машины через способность её к творчеству. Первоначально тест предложили в 2001 году: тогда машина должна была создать произведение искусства, которое разработчик машины принял бы за созданное человеком. Так как чётких критериев успеха нет, тест получается слишком неточным.

В прошлом году профессор Марк Рейдел из Технологического института Джорджии обновил тест, чтобы сделать его менее субъективным. Теперь машина должна создать произведение в определённом жанре и в определённых творческих рамках, заданных человеком-судьёй. Проще говоря, это должно быть произведение искусства в конкретном стиле. Скажем, судья может попросить машину нарисовать маньеристскую картину в духе Пармиджанино или написать джазовое произведение в духе Майлза Дэвиса. В отличие от оригинального теста, машины работают в заданных рамках, и поэтому судьи могут оценивать результат более объективно.

Испытание IKEA


Машине показывают картинку и спрашивают, например, где на ней находится чашка, - и дают несколько вариантов ответа. Все варианты ответов правильные (на столе, на подстилке, перед стулом, слева от лампы) , но некоторые из них могут быть более человеческими, чем другие (скажем, из всего перечисленного человек скорее ответит «на столе») . Кажется, что это простое задание, но на самом деле способность описать, где находится объект по отношению к другим объектам - важнейший элемент человеческого разума. Здесь играют роль множество нюансов и субъективных суждений, от размера объектов до их роли в конкретной ситуации - в общем, контекст. Люди проделывают это интуитивно, а машины сталкиваются с проблемами.

Схемы Винограда


Чат-боты, проходящие тест Тьюринга, умело обманывают судей и заставляют поверить, что они - люди. По словам Гектора Левеска, профессора информатики в Университете Торонто, такой тест лишь показывает, как легко обмануть человека, особенно в короткой текстовой переписке. Но из теста Тьюринга невозможно понять, есть ли у машины интеллект или хотя бы понимание языка.

Понятие искусственный интеллект (ИИ или AI) объединяет в себе не только технологии, позволяющие создавать интеллектуальные машины (включая компьютерные программы). ИИ – это также одно из направлений научной мысли.

Искусственный интеллект — определение

Интеллект – это психическая составляющая человека, которая обладает следующими способностями:

  • приспособленческая;
  • обучаемость посредством накопления опыта и знаний;
  • способность применять знания и навыки для управления окружающей средой.

Интеллект объединяет в себе все способности человека к познанию действительности. При помощи него человек мыслит, запоминает новую информацию, воспринимает окружающую среду и так далее.

Под искусственным интеллектом понимается одно из направлений информационных технологий, которое занимается изучением и разработкой систем (машин), наделенных возможностями человеческого интеллекта: способность к обучению, логическому рассуждению и так далее.

В настоящий момент работа над искусственным интеллектом проводится путем создания новых программ и алгоритмов, решающих задачи так же, как это делает человек.

В связи с тем, что определение ИИ эволюционирует по мере развития этого направления, необходимо упомянуть AI Effect. Под ним понимается эффект, который создает искусственный интеллект, достигнувший некоторого прогресса. Например, если ИИ научился выполнять какие-либо действия, то сразу подключаются критики, которые доказывают, что эти успехи не свидетельствуют о наличии мышления у машины.

Сегодня развитие искусственного интеллекта идет по двум независимым направлениям:

  • нейрокибернетика;
  • логический подход.

Первое направление предусматривает исследование нейронных сетей и эволюционных вычислений с точки зрения биологии. Логический подход подразумевает разработку систем, которые имитируют интеллектуальные процессы высокого уровня: мышление, речь и так далее.

Первые работы в области ИИ начали вести в середине прошлого века. Пионером исследований в этом направлении стал Алан Тьюринг , хотя определенные идеи начали высказывать философы и математики в Средние века. В частности, еще в начале 20-го века была представлена механическое устройство, способное решать шахматные задачи.

Но по-настоящему это направление сформировалось к середине прошлого столетия. Появление работ по ИИ предваряли исследования о природе человека, способах познания окружающего мира, возможностях мыслительного процесса и других сферах. К тому времени появились первые компьютеры и алгоритмы. То есть, был создан фундамент, на котором зародилось новое направление исследований.

В 1950 году Алан Тьюринг опубликовал статью, в которой задавался вопросами о возможностях будущих машин, а также о том, способны ли они обойти человека в плане разумности. Именно этот ученый разработал процедуру, названную потом в его честь: тест Тьюринга.

После опубликования работ английского ученого появились новые исследования в области ИИ. По мнению Тьюринга, мыслящей может быть признана только та машина, которую невозможно при общении отличить от человека. Примерно в то же время, когда появилась статься ученого, зародилась концепция, получившая название Baby Machine. Она предусматривала поступательное развитие ИИ и создание машин, мыслительные процессы которых сначала формируются на уровне ребенка, а затем постепенно улучшаются.

Термин «искусственный интеллект» зародился позднее. В 1952 году группа ученых, включая Тьюринга, собралась в американском университете Дартмунда, чтобы обсудить вопросы, связанные с ИИ. После той встречи началось активное развитие машин с возможностями искусственного интеллекта.

Особую роль в создании новых технологий в области ИИ сыграли военные ведомства, которые активно финансировали это направление исследований. Впоследствии работы в области искусственного интеллекта начали привлекать крупные компании.

Современная жизнь ставит более сложные задачи перед исследователями. Поэтому развитие ИИ ведется в принципиально других условиях, если сравнивать их с тем, что происходило в период зарождения искусственного интеллекта. Процессы глобализации, действия злоумышленников в цифровой сфере, развитие Интернета и другие проблемы – все это ставит перед учеными сложные задачи, решение которых лежит в области ИИ.

Несмотря на успехи, достигнутые в этой сфере в последние годы (например, появление автономной техники), до сих пор не утихают голоса скептиков, которые не верят в создание действительно искусственного интеллекта, а не очень способной программы. Ряд критиков опасается, что активное развитие ИИ вскоре приведет к ситуации, когда машины полностью заменят людей.

Направления исследований

Философы пока не пришли к единому мнению о том, какова природа человеческого интеллекта, и каков его статус. В связи с этим в научных работах, посвященных ИИ, встречается множество идей, повествующих, какие задачи решает искусственный интеллект. Также отсутствует единое понимание вопроса, какую машину можно считать разумной.

Сегодня развитие технологий искусственного интеллекта идет по двум направлениям:

  1. Нисходящее (семиотическое). Оно предусматривает разработку новых систем и баз знаний, которые имитируют высокоуровневые психические процессы типа речи, выражения эмоций и мышления.
  2. Восходящее (биологическое). Данный подход предполагает проведение исследований в области нейронных сетей, посредством которых создаются модели интеллектуального поведения с точки зрения биологических процессов. На базе этого направления создаются нейрокомпьютеры.

Определяет способность искусственного интеллекта (машины) мыслить так же, как человек. В общем понимании этот подход предусматривает создание ИИ, поведение которого не отличается от людских действий в одинаковых, нормальных ситуациях. По сути, тест Тьюринга предполагает, что машина будет разумной лишь в том случае, если при общении с ней невозможно понять, кто говорит: механизм или живой человек.

Книги в жанре фантастика предлагают другой метод оценки возможностей ИИ. Настоящим искусственный интеллект станет в том случае, если он будет чувствовать и сможет творить. Однако этот подход к определению не выдерживает практического применения. Уже сейчас, например, создаются машины, которые обладают способностью реагировать на изменения окружающей среды (холод, тепло и так далее). При этом они не могут чувствовать так, как это делает человек.

Символьный подход

Успех в решении задач во многом определяется способностью гибко подходить к ситуации. Машины, в отличие от людей, интерпретируют полученные данные единым образом. Поэтому в решении задач принимает участие только человек. Машина проводит операции на основании написанных алгоритмов, которые исключают применение нескольких моделей абстрагирования. Добиться гибкости от программ удается путем увеличения ресурсов, задействованных в ходе решения задач.

Указанные выше недостатки характерны для символьного подхода, применяемого при разработке ИИ. Однако данное направление развития искусственного интеллекта позволяет создавать новые правила в процессе вычисления. А проблемы, возникающие у символьного подхода, способны решить логические методы.

Логический подход

Этот подход предполагает создание моделей, имитирующих процесс рассуждения. В его основе заложены принципы логики.

Данный подход не предусматривает применение жестких алгоритмов, которые приводят к определенному результату.

Агентно-ориентированный подход

Он задействует интеллектуальных агентов. Этот подход предполагает следующее: интеллект представляет собой вычислительную часть, посредством которой достигаются поставленные цели. Машина играет роль интеллектуального агента. Она познает окружающую среду при помощи специальных датчиков, а взаимодействует с ней посредством механических частей.

Агентно-ориентированный подход уделяет основное внимание разработке алгоритмов и методов, которые позволяют машинам сохранять работоспособность в различных ситуациях.

Гибридный подход

Этот подход предусматривает объединение нейронных и символьных моделей, за счет чего достигается решение всех задач, связанных с процессами мышления и вычислений. Например, нейронные сети могут генерировать направление, в котором двигается работа машины. А статическое обучение предоставляет тот базис, посредством которого решаются задачи.

Согласно прогнозам экспертов компании Gartner , к началу 2020-х годов практически все выпускаемые программные продукты будут использовать технологии искусственного интеллекта. Также специалисты предполагают, что около 30% инвестиций в цифровую сферу будут приходиться на ИИ.

По мнению аналитиков Gartner, искусственный интеллект открывает новые возможности для кооперации людей и машин. При этом процесс вытеснения человека ИИ невозможно остановить и в будущем он будет ускоряться.

В компании PwC считают, что к 2030 году объем мирового валового внутреннего продукта вырастет примерно на 14% за счет быстрого внедрения новых технологий. Причем примерно 50% прироста обеспечит повышение эффективности производственных процессов. Вторую половину показателя составит дополнительная прибыль, полученная за счет внедрения ИИ в продукты.

Первоначально эффект от использования искусственного интеллекта получит США, так как в этой стране созданы лучшие условия для эксплуатации машин на ИИ. В дальнейшем их опередит Китай, который извлечет максимальную прибыль, внедряя подобные технологии в продукцию и ее производство.

Эксперты компании Saleforce заявляют, что ИИ позволит увеличить доходность малого бизнеса примерно на 1,1 триллиона долларов. Причем произойдет это к 2021 году. Отчасти добиться указанного показателя удастся за счет реализации решений, предлагаемых ИИ, в системы, отвечающие за коммуникацию с клиентами. Одновременно с этим будет улучаться эффективность производственных процессов благодаря их автоматизации.

Внедрение новых технологий также позволит создать дополнительные 800 тысяч рабочих мест. Эксперты отмечают, что указанный показатель нивелирует потери вакансий, произошедшие из-за автоматизации процессов. По прогнозу аналитиков, основанных на результатах опроса среди компаний, их расходы на автоматизацию производственных процессов к началу 2020-х годов возрастут примерно до 46 миллиардов долларов.

В России также ведутся работы в области ИИ. На протяжении 10 лет государство профинансировало более 1,3 тысячи проектов в данной сфере. Причем большая часть инвестиций пошло на развитие программ, не связанных с ведением коммерческой деятельности. Это показывает, что российское бизнес-сообщество пока не заинтересовано во внедрении технологий искусственного интеллекта.

В общей сложности на указанные цели в России инвестировали порядка 23 миллиардов рублей. Размер государственных субсидий уступает тем объемам финансирования сферы ИИ, которые демонстрируют другие страны. В США на эти цели каждый год выделяют порядка 200 миллионов долларов.

В основном в России из госбюджета выделяют средства на развитие технологий ИИ, которые затем применяются в транспортной сфере, оборонной промышленности и в проектах, связанных с обеспечением безопасности. Это обстоятельство указывает на то, что в нашей стране чаще инвестируют в направления, которые позволяют быстро добиться определенного эффекта от вложенных средств.

Приведенное выше исследование также показало, что в России сейчас накоплен высокий потенциал для подготовки специалистов, которые могут быть задействованы в разработке технологий ИИ. За 5 последних лет обучение по направлениям, связанным с ИИ, прошли примерно 200 тысяч человек.

Технологии ИИ развиваются в следующих направлениях:

  • решение задач, позволяющих приблизить возможности ИИ к человеческим и найти способы их интеграции в повседневность;
  • разработка полноценного разума, посредством которого будут решаться задачи, стоящие перед человечеством.

В настоящий момент исследователи сосредоточены на разработке технологий, которые решают практические задачи. Пока ученые не приблизились к созданию полноценного искусственного разума.

Разработкой технологиями в области ИИ занимаются многие компании. «Яндекс» не один год применяет их в работе поисковика. С 2016 года российская IT-компания занимается исследованиями в области нейронных сетей. Последние изменяют характер работы поисковиков. В частности, нейронные сети сопоставляют введенный пользователем запрос с неким векторным числом, который наиболее полно отражает смысл поставленной задачи. Иными словами, поиск ведется не по слову, а именно по сути информации, запрашиваемой человеком.

В 2016 году «Яндекс» запустил сервис «Дзен» , который анализирует предпочтения пользователей.

У компании Abbyy недавно появилась система Compreno . При помощи нее удается понять на естественном языке написанный текст. На рынок также сравнительно недавно вышли и другие системы, основанные на технологиях искусственного интеллекта:

  1. Findo. Система способна распознавать человеческую речь и занимается поиском информации в различных документах и файлах, используя при этом сложные запросы.
  2. Gamalon. Эта компания представила систему со способностью к самообучению.
  3. Watson. Компьютер компании IBM, использующий в процессе поиска информации большое количество алгоритмов.
  4. ViaVoice. Система распознавания человеческой речи.

Крупные коммерческие компании не обходят стороной достижения в области искусственного интеллекта. Банки активно внедряют подобные технологии в свою деятельность. При помощи систем, основанных на ИИ, они проводят операции на биржах, ведут управление собственностью и выполняют иные операции.

Оборонная промышленность, медицина и другие сферы внедряют технологии распознавания объектов. А компании, занимающие разработкой компьютерных игр, применяют ИИ для создания очередного продукта.

В течение нескольких последних лет группа американских ученых ведет работу над проектом NEIL , в рамках которого исследователи предлагают компьютеру распознать, что изображено на фотографии. Специалисты предполагают, что таким образом они смогут создать систему, способную самообучаться без внешнего вмешательства.

Компания VisionLab представила собственную платформу LUNA , которая может в режиме реального времени распознавать лица, выбирая их из огромного кластера изображений и видеороликов. Данную технологию сегодня применяют крупные банки и сетевые ретейлеры. При помощи LUNA можно сопоставлять предпочтения людей и предлагать им соответствующие товары и услуги.

Над подобными технологиями работает российская компания N-Tech Lab . При этом ее специалисты питаются создать систему распознавания лиц, основанную на нейронных сетях. По последним данным, российская разработка лучше справляется с поставленными задачами, чем человек.

По мнению Стивена Хокинга, развитие технологий искусственного интеллекта в будущем приведет к гибели человечества. Ученый отметил, что люди из-за внедрения ИИ начнут постепенно деградировать. А в условиях естественной эволюции, когда человеку для выживания необходимо постоянно бороться, этот процесс неминуемо приведет к его гибели.

В России положительно рассматривают вопрос внедрения ИИ. Алексей Кудрин однажды заявил о том, что использование таких технологий позволит примерно на 0,3% от ВПП уменьшить расходы на обеспечение работы государственного аппарата. Дмитрий Медведев предрекает исчезновение ряда профессий из-за внедрения ИИ. Однако чиновник подчеркнул, что использование таких технологий приведет к бурному развитию других отраслей.

По данным экспертов Всемирного экономического форума, к началу 2020-х годов в мире из-за автоматизации производства рабочих мест лишаться около 7 миллионов человек. Внедрение ИИ с высокой долей вероятности вызовет трансформацию экономики и исчезновение ряда профессий, связанных с обработкой данных.

Эксперты McKinsey заявляют, что активнее процесс автоматизации производства будет проходить в России, Китае и Индии. В этих странах в ближайшее время до 50% рабочих потеряют свои местах из-за внедрения ИИ. Их место займут компьютеризированные системы и роботы.

По данным McKinsey, искусственный интеллект заменит собой профессии, предусматривающие физический труд и обработку информации: розничная торговля, гостиничный персонал и так далее.

К середине текущего столетия, как полагают эксперты американской компании, число рабочих мест во всем мире сократится примерно на 50%. Места людей займут машины, способные проводить аналогичные операции с той же или более высокой эффективностью. При этом эксперты не исключают варианта, при котором данный прогноз будет реализован раньше указанного срока.

Другие аналитики отмечают вред, который могут нанести роботы. Например, эксперты McKinsey обращают внимание на то, что роботы, в отличие от людей, не платят налоги. В результате из-за снижения объемов поступлений в бюджет государство не сможет поддерживать инфраструктуру на прежнем уровне. Поэтому Билл Гейтс предложил ввести новый налог на роботизированную технику.

Технологии ИИ повышают эффективность работы компаний за счет снижения числа совершаемых ошибок. Кроме того, они позволяют повысить скорость выполнения операций до того уровня, который не может достигнуть человек.

Что же это такое искусственный интеллект? Несомненно, многие слышали о автомобилях, способных управлять своим движением без помощи человека, устройствах распознавания речи, таких как Apple’s Siri, Amazon’s Alexa, Google’s Assistant и Microsoft’s Cortana. Но это далеко не все возможности искусственного интеллекта (ИИ).

ИИ был впервые «открыт» в 1950-х годах. На протяжении многих лет его ожидали взлеты и падения, но на современном этапе развития человечества искусственный интеллект рассматривается как ключевая технология будущего. Благодаря развитию электроники и появлению более быстрых процессоров все большее количество приложений начинает использовать ИИ. Искусственный интеллект – это необычная программная технология, с которой должен ознакомиться каждый инженер. В данной статье мы постараемся кратно описать данную технологию.

Искусственный интеллект определен

ИИ — это подполе компьютерной науки, которая включает в себя более разумное использование компьютеров и электронных компонентов, имитируя человеческий мозг. Интеллект — это способность приобретать знания и опыт и применять их для решения задач. ИИ особенно полезен при анализе и интерпретации массивов данных и извлечении из него реально полезной информации. Из информации приходит понимание, которое может быть применено для принятия решений или какого-либо рода действия.

Области исследования

Искусственный интеллект – это широкая технология с множеством возможных применений. Обычно его разделяют на подветви. Сделаем небольшой обзор каждой из них:

  • Решение общих задач – не имеющих конкретного алгоритмического решения. Задачи с неопределенностью и двусмысленностью.
  • Экспертные системы – программное обеспечение, которое содержит базу знаний правил, фактов и данных, полученных от нескольких отдельных экспертов. База данных может быть запрошена для решения проблем, диагностики заболеваний или предоставления консультаций.
  • Обработка естественного языка (NLP) – используется для анализа текстов. Распознавание голоса также является частью (NLP).
  • Компьютерное зрение — анализ и понимание визуальной информации (фотографии, видео и так далее). Примером могут служить машинное зрение и распознавание лиц. Используется в «автономных» автомобилях и производственных линиях.
  • Робототехника – создание более умных, адаптивных и «самостоятельных» роботов.
  • Игры: ИИ отлично играет в игры. Компьютеры уже запрограммированы на игру и выигрыш в шахматах, покере и в Го.
  • Машинное обучение — процедуры, позволяющие компьютеру учиться на основе входных данных и осмысливать результаты. Нейронные сети составляют основу машинного обучения.

Как работает искусственный интеллект

Обычные компьютеры используют алгоритмы для решения задач. Последовательность инструкций приводит к пошаговому выполнению действий для получения результатов. Традиционные формы искусственного интеллекта основываются на базах знаний и механизмах логического вывода, которые используют различные механизмы для работы с базой знаний через пользовательский интерфейс. Полезные результаты получены некоторыми из перечисленных ниже методов:

  • Поиск: алгоритмы поиска используют базу данных информации, собранной в графы или деревья. Поиск — это основной метод искусственного интеллекта.
  • Логика: дедуктивное и индуктивное рассуждение используется для определения истинности или ложности утверждений. Это включает как логику высказываний, так и логику предикатов.
  • Правила: правила — это серия инструкций «если», которые можно найти для определения результата. Системы, основанные на правилах, называются экспертными системами.
  • Вероятность и статистика: некоторые задачи могут быть решены, и решения находятся, благодаря применению стандартной математической теории вероятности и статистики.
  • Списки: некоторые типы информации могут быть сохранены в списки, которые становятся доступными для поиска.
  • Другими формами знаний являются схемы, фреймы и сценарии, которые представляют собой структуры, инкапсулирующие различные типы знаний. Методы поиска ищут ответы по соответствующим запросам.

Традиционные или унаследованные методы ИИ, такие как поиск, логика, вероятность и правила, считаются первой волной искусственного интеллекта. Эти методы все еще используются и хорошо воспринимают знание и рассуждения, особенно для узкого круга задач. В первой волне ИИ отсутствуют человеческие черты обучения и абстрагирования решений. Эти качества теперь доступны во второй волне искусственного интеллекта, благодаря нейронным сетям и машинному обучению.

Нейронные сети

Сегодня большинство исследований и разработок ИИ основаны на использовании нейронных сетей или искусственных нейронных сетей (ИНС). Эти сети состоят из искусственных нейронов, имитирующих нейроны в человеческом мозге, которые отвечают за наше мышление и обучение. Каждый нейрон является узлом сложной взаимосвязи, которая связывает многие нейроны с другими посредством синапсов. ИНС имитирует эту сеть.

Каждый узел имеет несколько взвешенных входов, а также выход и установку порога (рисунок выше). Такие узлы обычно реализуются в программном обеспечении, хотя аппаратная эмуляция также возможна. Типичная схема состоит из трех слоев — входной слой, скрытый (обрабатывающий или обучающий слой) и выходной слой:

Некоторые механизмы используют обратное распространение для обеспечения обратной связи, которая изменяет веса ввода некоторых узлов по мере получения новой информации.

Машинное обучение и глубокое обучение

Машинное обучение — это метод обучения компьютера распознаванию образов. Компьютер или устройство «обучается» с примером, а затем запускаются специальные программы для сравнения ввода с обученным значением. Как правило, для обучения программного обеспечения требуются огромные объемы данных. Программы машинного обучения предназначены для автоматического изучения, поскольку они получают больше знаний и опыта благодаря новым материалам.

Нейронные сети обычно используются для машинного обучения, однако могут использоваться и другие алгоритмы. Затем программное обеспечение может изменить себя, улучшив распознаваемость на основе новых входных данных. Теперь некоторые системы машинного обучения могут самостоятельно распознавать образы без обучения, а затем модифицировать себя для дальнейшего совершенствования.

Глубокое обучение — это расширенный случай машинного обучения. Он также использует нейронные сети, называемые глубокими нейронными сетями (ГНС). Они включают в себя дополнительные скрытые уровни вычислений для дальнейшего совершенствования своих возможностей. Требуется массовое обучение. Программисты могут повысить производительность, играя с весами межсоединений. ГНС также требуют матричной обработки. Однако следует отметить, что ГНС используют статистические веса, поэтому результаты, скажем, в видимом распознавании, могут быть не 100%. Кроме того, отладка таких систем – очень кропотливая работа.

Машинное обучения и глубокое обучения широко используются для анализа больших массивов данных, а также в компьютерном зрении и распознавании речи. Также они могут применяться и в других областях, таких как медицина, юриспруденция и финансы.

Программное обеспечение искусственного интеллекта

Для программирования ИИ может использоваться почти любой язык программирования, но некоторые языки имеют определенные преимущества. Профильные языки, разработанные специально для ИИ, включают LISP и Prolog. LISP, один из старейших языков более высокого уровня, обрабатывает списки. Prolog основан на логике. Сегодня популярны C ++ и Python. Также существует специальное программное обеспечение для разработки экспертных систем.

Несколько крупных пользователей ИИ предоставляют платформы для разработки, в том числе Amazon, Baidu (Китай), Google, IBM и Microsoft. Эти компании предлагают предварительно обученные системы в качестве стартовой точки для некоторых распространенных приложений, таких как распознавание голоса. Поставщики процессоров, такие как Nvidia и AMD, также предлагают определенную поддержку.

Аппаратное обеспечение для искусственного интеллекта

Запуск программного обеспечения искусственного интеллекта на компьютере обычно требует высокой скорости и большого объема памяти. Однако некоторые простые приложения могут работать на 8-битном процессоре. Некоторые из современных процессоров более чем подходят, а несколько параллельных процессоров могут быть идеальным решением для определенных приложений. Кроме того, для некоторых применений были разработаны специальные процессоры.

Графические процессоры (GPU) представляют собой пример фокусировки архитектуры и набора инструкций на заданное использование для оптимизации производительности. Например, специальные процессоры Nvidia для самостоятельного вождения автомобилей и графические процессоры AMD. Google разработал собственные процессоры для оптимизации своих поисковых систем. Intel и Knupath также предлагают программную поддержку для своих передовых процессоров. В некоторых случаях специальная логика в ASIC или FPGA может реализовать определенное приложение.

Активность и текущий статус

Искусственный интеллект когда-то считался экзотическим программным обеспечением, предназначенным для особых нужд. Требование высокоскоростных компьютеров с большим количеством памяти ограничивало его использование. Сегодня, благодаря супер быстрым процессорам, многоядерным процессорам и дешевой памяти, ИИ стал более популярным. Поисковые системы Google, которые мы все используем ежедневно, основаны на искусственном интеллекте.

На сегодняшний день акцент, несомненно, сделан на нейронные сети и глубокое машинное обучение. В то время как распознавание голоса и самоходные автомобили по-прежнему в центре внимания, появляются другие ключевые приложения, такие как распознавание лиц, беспилотная навигация, робототехника, медицинская диагностика и финансы. В разработке также находятся и передовые военные приложения (например, автономное оружие).

Будущее ИИ выглядит многообещающим. По данным Orbis Research, к 2022 году ожидается рост глобального рынка искусственного интеллекта с совокупным ежегодным темпом роста более 35%. The International Data Corporation (IDC) также позитивно настроена, заявив, что расходы на искусственный интеллект, как ожидается, увеличатся до 47 миллиардов долларов в 2020 году, по сравнению с 8 миллиардами в 2016 году.

У многих возникает логический вопрос – заменит ли искусственный интеллект людей некоторых профессий, и что это будут за профессии? Ответ звучит следующим образом – «возможно и только некоторые». Скорее всего, компьютеры на основе искусственного интеллекта помогут повысить производительность некоторых профессий, повысив производительность, эффективность и скорость принятия решений. Однако, некоторые рабочие места в промышленности все же будут утеряны, так как большое развитие получает робототехника, но замена человека машинами приведет к созданию новых рабочих мест, связанных с обслуживанием этих машин.

Другой вопрос, задаваемый многими людьми, может ли быть искусственный интеллект опасен для человечества? ИИ умен, но не настолько умен. Его основным назначением будет анализ данных, решение задач и принятие решений на основе имеющейся информации и дистиллированных знаний. Люди по прежнему доминируют, особенно когда речь заходит о инновациях и творчестве. Однако трудно предсказать будущее. По крайней мере, на данном этапе развития сверх умных роботов нет, пока нет…

Многим людям кажется, что искусственный интеллект - это далекое будущее, но мы с ним сталкиваемся ежедневно

Саудовская Аравия, 2017 год. Первый в мире робот получает гражданство. Это София, самый известный представитель технологий искусственного интеллекта в медийном пространстве. Она умеет поддерживать беседу, воспроизводит до 62 правдоподобных выражений лица, делает провокационные заявления и шутит об Илоне Маске и уничтожении человечества.

Казалось бы, такие технологии пока далеки от "простых смертных", и на самом деле мы взаимодействуем с искусственным интеллектом ежедневно. Так что это такое, где его найти и как машинам удается обучаться?

Что, когда, откуда

На запрос, что такое искусственный интеллект (англ. Artificial intelligence, AI), Википедия ответит, что это раздел компьютерной лингвистики и информатики, который формализует задачи, которые напоминают дела, выполняемые человеком.

Простыми словами, искусственный интеллект (англ. Artificial intelligence, AI) - это широкая отрасль компьютерных наук, которые направлены на имитацию интеллекта человека машинами. И хотя об этой технологии активно говорят где-то с начала 2000-х, она далеко не нова.

Термин "искусственный интеллект" еще в 1956 году ввел профессор Дартмутского колледжа Джон Маккарти, когда возглавил небольшую команду ученых, чтобы определить, могут ли машины обучаться, как дети, методом проб и ошибок, в конце развив формальное мышление.

Фактически проект базировался на намерении выяснить, как заставить машины "использовать язык, абстрактные формы, решать те проблемы, которые обычно решают люди, и совершенствоваться". И это было более 60 лет назад.

Почему спрос на AI возник именно сейчас

1. Сегодня мы имеем дело с беспрецедентным объемом информации. За последние несколько лет было создано 90% мировых данных. Впервые эта статистика упоминается в исследовании корпорации IBM еще в 2013 году, но эта тенденция остается постоянной. Действительно, каждые два года в течение последних трех десятилетий объем данных в мире увеличивается примерно в 10 раз.

2. Алгоритмы становятся все более изощренными, а машины с нейронными сетями способны воспроизводить способ работы человеческого мозга и формировать сложные ассоциации.

3. Вычислительная мощность постоянно растет и способна обработать гигантский объем данных.

Сложить все это вместе, и получаем множество технических работников, руководителей компаний и венчурных капиталистов, которые инвестируют в развитие AI и заинтересованы в прогрессе технологии.

"Искусственный интеллект" и мы

Технологии искусственного интеллекта захватывают воображение общественности в течение десятилетий, но многие не понимают, что они используют их каждый день.

Так, профильная компания SpotHub провела рандомный опрос 1400 человек из разных уголков мира, и оказалось, что 63% из них не осознают повседневного значение AI.

Возможно, это потому, что когда речь идет об искусственном интеллекте, мы ожидаем видеть умного робота, который говорит и думает, как и мы. И хотя София и подобные ей машины сейчас могут показаться "приветом" из будущего, это все еще технология, далекая от самосознания.

Сейчас же нас окружают множество невероятно сложных инструментов искусственного интеллекта, которые призваны облегчить все аспекты современной жизни. Вот лишь некоторые из них:

Поисковые ассистенты, такие как Siri, Alexa и Cortana, оснащены программами обработки и распознавания человеческого голоса, что делает их инструментами AI. Пока возможности голосового поиска доступны на 3,9 миллиардах устройств Apple, Android и Windows по всему миру, и это не считая других производителей. За свою распространенность голосовой поиск является одной из самых современных технологий с поддержкой Аl.

Видеоигры

Видеоигры уже давно используют Аl, сложность и эффективность которого возросла в геометрической прогрессии в течение последних нескольких десятилетий. В результате этого, например, виртуальные персонажи способны вести себя совершенно непредсказуемым образом, анализируя окружающую среду.

Автономные машины

Полностью автономные автомобили все больше приближаются к реальности. В этом году Google сообщила об алгоритме, способном научиться водить машину точь-в-точь, как это делает человек - с помощью опыта. Идея в том, что в конечном итоге авто будет способно "смотреть" на дорогу и принимать решение, подходящее к увиденному.

Предложение товаров

Крупные ритейлеры, вроде Target и Amazon, зарабатывают миллионы благодаря способности их магазинов предвидеть ваши потребности. Так, сервис рекомендаций на сайте Amazon.com работает на базе технологий машинного обучения, они же помогают выбирать оптимальные маршруты автоматического перемещения в центрах обработки и выполнения заказов.

На базе этих же технологий работают цепочки поставок и системы прогнозирования и распределения ресурсов. Технологии понимания и распознавания естественной речи легли в основу сервиса Alexa. На базе глубокого обучения построена новая инициатива компании с использованием дронов, Prime Air, а также технология с применением машинного зрения в новых точках розничной торговли, Amazon Go.

Онлайн поддержка клиентов

В сфере услуг чат-боты совершили революцию в обслуживании, и потребители считают их не менее удобными, чем телефоны или е-мейлы.

Концепция проста: бот с AI, который работает на веб-сайте предприятия, отвечает на запросы посетителей, вроде: Какая цена? Какой номер телефона вашей компании? Где ваш офис? Посетитель получает прямой ответ, вместо того чтобы искать необходимую информацию по сайту.

Читайте также: Искусственный интеллект может преобразовать автономное оружие на роботов-убийц. Почему это действительно страшно

Новостные порталы

Искусственный интеллект способен писать простые истории, такие как финансовые отчеты, спортивные репортажи и т.д. К этому Хэллоуину исследователи из Массачусетского технологического института создали

Суть искусственного интеллекта в формате вопросов и ответов. История создания, технологии исследования, связан ли искусственный интеллект с IQ и можно ли его сравнить с человеческим. На вопросы отвечал профессор Стэнфордского университета Джон Маккарти .

Что такое искусственный интеллект (ИИ)?

Искусственный интеллект — это область науки и инжиниринга, занимающаяся созданием машин и компьютерных программ, обладающих интеллектом. Она связана с задачей использования компьютеров для понимания человеческого интеллекта. При этом искусственный интеллект не должен ограничиваться только биологически наблюдаемыми методами.

Да, но что такое интеллект?

Интеллект – способность приходить к решению при помощи вычислений. Интеллект разного вида и уровня есть у людей, многих животных и некоторых машин.

Разве нет определения интеллекта, которое не зависит от соотнесения его с человеческим интеллектом?

До настоящего времени нет понимания, какие виды вычислительных процедур мы хотим назвать интеллектуальными. Мы знаем далеко не обо всех механизмах интеллекта.

Является ли интеллект однозначным понятием, чтобы на вопрос «Обладает ли данная машина интеллектом?» можно было ответить «да» или «нет»?

Нет. Исследования ИИ показали, как использовать лишь некоторые из механизмов. Если для выполнения задачи требуются только хорошо изученные модели, получаются очень впечатляющие результаты. Такие программы обладают «небольшим» интеллектом.

Является ли искусственный интеллект попыткой имитировать человеческий интеллект?

Иногда, но далеко не всегда. С одной стороны, мы узнаем, как заставить машины решать задачи, наблюдая за людьми или за работой наших собственных алгоритмов. С другой стороны, исследователи ИИ используют алгоритмы, которые не наблюдаются у людей или требуют гораздо больших вычислительных ресурсов.

У компьютерных программ есть IQ?

Нет. IQ основан на темпах развития интеллекта у детей. Это отношение возраста, в котором ребенок обычно набирает определенный результат, к возрасту ребенка. Данная оценка подходящим образом распространяется и на взрослых людей. IQ хорошо коррелирует с различными показателями успеха или неудачи в жизни. Но создание компьютеров, которые могут набрать высокий балл в тестах IQ, будет слабо связано с их полезностью. Например, способность ребенка повторять длинную последовательность цифр хорошо коррелирует с другими интеллектуальными способностями. Она показывает, какое количество информации ребенок может запомнить за один раз. При этом удержание в памяти цифр является тривиальной задачей даже для самых примитивных компьютеров.

Как сравнить человеческий и компьютерный интеллекты?

Артур Р. Дженсен, ведущий исследователь в области человеческого интеллекта, в качестве «эвристической гипотезы» утверждает, что обычные люди имеют одни и те же механизмы интеллекта и интеллектуальные различия связаны с «количественными биохимическими и физиологическими условиями». К ним относятся скорость мышления, краткосрочную память и способность формировать точные и извлекаемые долгосрочные воспоминания.

Независимо от того, правильна ли точка зрения Дженсена в отношении человеческого интеллекта, ситуация в ИИ на сегодняшний день является противоположной.

Компьютерные программы имеют большой запас скорости и памяти, но их способности соответствуют интеллектуальным механизмам, которые разработчики программ хорошо понимают и могут вложить в них . Некоторые способности, которые дети обычно не развивают до подросткового возраста, внедряются. Другие, которыми владеют двухлетние дети, все еще отсутствуют. Дело еще более усугубляется тем фактом, что когнитивные науки до сих пор не могут точно определить, каковы человеческие способности. Скорее всего, организация интеллектуальных механизмов ИИ выгодно отличается от таковой у людей.

Когда человеку удается решить задачу быстрее, чем компьютеру, это говорит о том, что разработчикам не хватает понимания механизмов интеллекта, необходимых для эффективного выполнения данной задачи.

Когда началось исследование ИИ?

После Второй мировой войны несколько человек начали независимо работать над интеллектуальными машинами. Английский математик Алан Тьюринг, возможно, был первым из них. Он прочитал свою лекцию в 1947 году. Тьюринг одним из первых решил, что ИИ лучше всего исследовать путем программирования компьютеров, а не конструирования машин . К концу 1950-х годов было много исследователей ИИ, и большинство из них основывали свою работу на программировании компьютеров.

Является ли целью ИИ поместить человеческий разум в компьютер?

У человеческого разума есть много особенностей, вряд ли реально имитировать каждую из них.


Что такое тест Тьюринга?

В статье А. Алана Тьюринга 1950 года «Вычислительная техника и разум» обсуждались условия обладания машиной интеллектом. Он утверждал, что если машина может успешно притворяться человеком перед разумным наблюдателем, то вы, конечно же, должны считать ее разумной. Этот критерий удовлетворит большинство людей, но не всех философов. Наблюдатель должен взаимодействовать с машиной или человеком через средство ввода-вывода для исключения необходимости имитации машиной внешнего вида или голоса человека. Задача как машины, так и человека состоит в том, чтобы заставить наблюдателя считать себя человеком.

Тест Тьюринга является односторонним. Машина, успешно проходящая тест, определенно должна считаться разумной, даже если она не обладает знаниями о людях, достаточными, чтобы их имитировать.

Книга Дэниела Деннета «Brainchildren» содержит прекрасное обсуждение теста Тьюринга и его различные части, которые были реализованы успешно, т. е. с ограничениями на знание наблюдателем об ИИ и предмете обсуждения. Оказывается, некоторых людей довольно легко убедить в том, что достаточно примитивная программа является разумной.

Является ли целью ИИ достижение человеческого уровня интеллекта?

Да. Конечной целью является создание компьютерных программ, которые могут решать проблемы и достигать целей так же, так и человек. Однако ученые, проводящие исследования в узких областях, ставят гораздо менее амбициозные цели.

Насколько далек искусственный интеллект от достижения человеческого уровня? Когда это произойдет?

Интеллект человеческого уровня может быть достигнут путем написания большого количества программ, и сбора обширных баз знаний о фактах на языках, которые сегодня используются для выражения знаний. Тем не менее, большинство исследователей ИИ считает, что необходимы новые фундаментальные идеи. Поэтому невозможно предсказать, когда будет создан интеллект человеческого уровня.

Является ли компьютер машиной, которая может стать интеллектуальной?

Компьютеры могут быть запрограммированы для имитации любого типа машины.

Скорость компьютеров позволяет им обладать интеллектом?

Некоторые люди думают, что требуются как более быстрые компьютеры, так и новые идеи. Компьютеры и 30 лет назад были достаточно быстрыми. Если бы мы только знали, как их программировать.

Что насчет создания «детской машины», которая могла бы улучшиться путем чтения и обучения на собственном опыте?

Эта идея неоднократно предлагалась с 1940-х годов. В конце концов, она будет реализована. Тем не менее, программы ИИ еще не достигли уровня, позволяющего узнать многое из того, чему ребенок учится в ходе жизнедеятельности. Существующие программы недостаточно хорошо понимают язык, чтобы многому научиться посредством чтения.

Являются ли теория вычислимости и вычислительная сложность ключами к ИИ?

Нет. Эти теории актуальны, но не затрагивают фундаментальные проблемы ИИ.

В 1930-х годах математические логики Курт Гёдель и Алан Тьюринг установили, что не существует алгоритмов, которые гарантировали бы решение всех задач в некоторых важных математических областях. Например, ответы на вопросы в духе: «является ли предложение логики первого порядка теоремой» или «имеет ли полиномиальное уравнение в одних переменных целочисленные решения в других». Так как люди способны решать задачи такого рода, данный факт было предложен в качестве аргумента в пользу того, что компьютеры по своей сути неспособны делать то, что делают люди. Об этом говорит и Роджер Пенроуз. Однако люди не могут гарантировать решения произвольных задач в этих областях.

В 1960-х годах ученые-программисты, в числе которых были Стив Кук и Ричард Карп, разработали теорию областей NP-полных задач. Задачи в данных областях разрешимы, но, по-видимому, их решение требует времени, растущего экспоненциально с размерностью задачи. Простейшим примером области NP-полной задачи служит вопрос: какие утверждения логики высказываний являются выполнимыми? Люди часто решают проблемы в области NP-полных задач в разы быстрее, чем это гарантируется основными алгоритмами, но не могут решать их быстро в общем случае.

Для ИИ важно, чтобы при решении задач алгоритмы были такими же эффективными, как и человеческий разум . Определение подобластей, в которых существуют хорошие алгоритмы, является важным, но многие программы, решающие задачи ИИ, не имеют отношения к легко идентифицируемым подобластям.

Теория сложности общих классов задач называется вычислительной сложностью. До сих пор эта теория не взаимодействовала с ИИ настолько, насколько можно было надеяться. Успех в решении проблем людьми и программами ИИ, по-видимому, зависит от свойств задач и методов решения задач, которые ни исследователи сложности, ни сообщество ИИ не могут определить точно.

Также актуальной является теория алгоритмической сложности, разработанная независимо друг от друга Соломоновым, Колмогоровым и Чайтиным . Она определяет сложность символьного объекта как длину наиболее короткой программы, которая сможет его сгенерировать. Доказательство того, что программа-кандидат является самой короткой или близкой к таковой, является неразрешимой задачей, но представление объектов генерирующими их короткими программами иногда может прояснять ситуацию, даже если вы не можете доказать, что ваша программа является самой короткой.