Обмен углеводов в мышцах. Нарушения углеводного обмена у детей

Углеводный обмен в организме человека - процесс тонкий, но имеющий важное значение. Без глюкозы организм слабеет, а в центральной нервной системе снижение ее уровня вызывает галлюцинации, головокружения и потери сознания. Нарушение углеводного обмена в организме человека проявляется почти сразу, а длительные сбои уровня глюкозы в крови вызывают опасные патологии. В связи с этим уметь регулировать концентрацию углеводов необходимо каждому человеку.

Как усваиваются углеводы

Углеводный обмен в организме человека заключается в его преобразовании в энергию, необходимую для жизни. Это происходит в несколько этапов:

  1. На первом этапе углеводы, попавшие в организм человека, начинают расщепляться на простые сахариды. Происходит это уже во рту под воздействием слюны.
  2. В желудке на нераспавшиеся во рту сложные сахариды начинает воздействовать желудочный сок. Он расщепляет даже лактозу до состояния галатозы, которая впоследствии преобразуется в необходимую глюкозу.
  3. В кровь глюкоза всасывается через стенки тонкого кишечника. Часть ее, даже минуя этап накопления в печени, сразу преображается в энергию для жизни.
  4. Далее процессы переходят на клеточный уровень. Глюкоза заменяет собой молекулы кислорода в крови. Это становится сигналом для поджелудочной железы о начале выработки и выброса в кровь инсулина - вещества, необходимого для доставки гликогена, в который преобразовалась глюкоза, внутрь клеток. То есть гормон помогает организму усваивать глюкозу на молекулярном уровне.
  5. Гликоген синтезируется в печени, именно она перерабатывает углеводы в необходимое вещество и даже способна делать небольшой запас гликогена.
  6. Если глюкозы слишком много, печень превращает их в простые жиры, связав их в цепочку нужными кислотами. Такие цепочки при первой необходимости расходуются организмом для превращения в энергию. Если они остаются невостребованными, то переводятся под кожу в виде жировых тканей.
  7. Доставленный инсулином в клетки мышечных тканей гликоген при необходимости, а именно при дефиците кислорода, означающего физическую нагрузку, вырабатывает энергию для мышц.

Регулировка обмена углеводов

Кратко об углеводном обмене в организме человека можно сообщить следующее. Все механизмы расщепления, синтеза и усвоения углеводов, глюкозы и гликогена регулируются различными ферментами и гормонами. Это соматотропный, стероидный гормон и самое главное - инсулин. Именно он помогает гликогену преодолеть клеточную оболочку и проникнуть внутрь клетки.

Нельзя не упомянуть об адреналине, регулирующем весь каскад фосфоролиза. В регулировании химических процессов по усвоению углеводов принимают участие ацетил-КоА, жирные кислоты, ферменты и другие вещества. Нехватка или переизбыток того или иного элемента обязательно вызовет сбой во всей системе усвоения и переработки углеводов.

Нарушения углеводного обмена

Трудно переоценить важность углеводного обмена в организме человека, ведь без энергии нет и жизни. И любое нарушение процесса усвоения углеводов, а значит и уровня глюкозы в организме приводит к опасным для жизни состояниям. Два основных отклонения: гипогликемия - уровень глюкозы критически низкий, и гипергликемия - концентрация углевода в крови превышена. И то и другое крайне опасно, например, пониженный уровень глюкозы сразу же отрицательно сказывается на функциях мозга.

Причины отклонений

Причины отклонений в регулировке уровня глюкозы имеют различные предпосылки:

  1. Наследственное заболевание - галактоземия. Симптомы патологии: дефицит веса, заболевание печени с пожелтением кожного покрова, задержка психического и физического развития, нарушение зрения. Данная болезнь часто приводит к смерти еще на первом году жизни. Это красноречиво говорит о значении углеводного обмена в организме человека.
  2. Другой пример генетического заболевания - фруктозная непереносимость. У больного при этом нарушается работа почек и печени.
  3. Синдром мальабсорбации. Характеризуется заболевание невозможностью усваивать моносахариды через слизистую оболочку тонкого кишечника. Приводит к нарушению почечной и печеночной функции, проявляется диарея, метеоризм. К счастью, болезнь поддается лечению путем приема больным ряда необходимых ферментов, снижающих характерную при данной патологии лактозную непереносимость.
  4. Болезнь Сандахоффа характеризуется нарушением выработки фермента А и В.
  5. Болезнь Тея-Сакса развивается в результате нарушения выработки в организме AN-ацетилгексозаминидазы.
  6. Самое известное заболевание - диабет. При этом недуге глюкоза не попадает в клетки, так как поджелудочная железа перестала выделять инсулин. Тот самый гормон, без которого невозможно проникновение глюкозы в клетки.

Большинство болезней, сопровождаемых нарушением уровня глюкозы в организме, являются неизлечимыми. В лучшем случае врачам удается стабилизировать состояние больных путем введения в их организмы недостающих ферментов или гормонов.

Нарушения углеводного обмена у детей

Особенности метаболизма и питания новорожденных приводит к тому, что в их организмах гликолиз протекает на 30 % интенсивнее, чем у взрослого человека. Поэтому важно определить причины появления нарушений углеводного обмена у малыша. Ведь первые дни человека наполнены событиями, требующими массы энергии: рождение, стресс, возросшая физическая активность, потребление пищи, дыхание кислородом. Нормализуется уровень гликогена только через несколько дней.

Помимо наследственных заболеваний, связанных с обменом веществ, которые могут проявиться с первых дней жизни, ребенок подвержен самым разным состояниям, способным привести к глютеновой болезни. Например, расстройство желудка или тонкого кишечника.

Для того чтобы не допустить развития глютеновой болезни, уровень глюкозы в крови малыша подвергается изучению еще в период внутриутробного развития. Именно поэтому будущая мать должна во время беременности сдавать все назначаемые врачом анализы и проходить инструментальные обследования.

Восстановление углеводного обмена

Как восстановить углеводный обмен в организме человека? Все зависит от того, в какую сторону сместился уровень глюкозы.

Если у человека наблюдается гипергликемия, то ему назначают диету по снижению в рационе жиров и углеводов. А при гипогликемии, то есть низком уровне глюкозы, наоборот, предписывается употреблять большее количество углеводов и белков.

Следует понимать, что восстановить углеводный обмен в организме человека довольно трудно. Одной диеты обычно не хватает, часто больной должен пройти курс лечения медицинскими препаратами: гормонами, ферментами и так далее. Например, при сахарном диабете больной должен до конца жизни получать инъекции гормона инсулина. Причем дозировка и схема приема препарата назначаются индивидуально в зависимости от состояния пациента. Ведь в целом лечение направлено на устранение причины нарушения углеводного обмена в организме человека, а не только на его временную нормализацию.

Специальная диета и гликемический индекс

Что такое углеводный обмен в организме человека, знают те, кто вынужден жить с хроническим неизлечимым заболеванием, характеризующимся нарушением уровня глюкозы в крови. Такие люди на собственном опыте узнали, что такое гликемический индекс. Эта единица определяет, сколько глюкозы в том или ином продукте.

Кроме ГИ любой врач или больной диабетик знают наизусть, в каком продукте и сколько содержится углеводов. На основе всей этой информации составляется особый план питания.

Вот, например, несколько позиций из рациона таких людей (на 100 г):

  1. Сухие - 15 ГИ, 3,4 г углеводов, 570 ккал.
  2. Земляной орех - 20 ГИ, 9,9 г углеводов, 552 ккал.
  3. Брокколи - 15 ГИ, 6,6 г углеводов, 34 ккал.
  4. Белый гриб - 10 ГИ, 1,1 г углеводов, 34 ккал.
  5. Листья салата- 10 ГИ, 2 г углеводов, 16 ккал.
  6. Латук - 10 ГИ, 2,9 г углеводов, 15 ккал.
  7. Томаты - 10 ГИ, 4,2 г углеводов, 19,9 ккал.
  8. Баклажан - 10 ГИ, 5,9 г углеводов, 25 ккал.
  9. Перец болгарский -10 ГИ, 6,7 г углеводов, 29 ккал.

В данном списке приведены продукты с низким ГИ. При диабете человек может смело есть пищу с ингредиентами, в которых ГИ не превышает 40, максимум 50. Остальное находится под строжайшим запретом.

Что будет, если самостоятельно регулировать углеводный обмен

Есть еще один аспект, о котором нельзя забывать в процессе регулирования углеводного обмена. Организм обязательно должен получать предназначенную для жизни энергию. И если пища не попадает в организм вовремя, то он начнет расщеплять жировые клетки, а затем клетки мышц. То есть наступит физическое истощение организма.

Увлечение монодиетами, вегитарианством, фруторианством и другими экспериментальными методиками питания, призванными регулировать обмен веществ, приводит не просто к плохому самочувствию, но к нарушению жизненно важных функций в организме и разрушению внутренних органов и структур. Разрабатывать рацион и назначать препараты может только специалист. Любое самолечение приводит к ухудшению состояния или даже смерти.

Заключение

Углеводный обмен играет важнейшую роль в организме, при его нарушении происходят сбои в работе многих систем и органов. Важно поддерживать в норме количество поступающих в организм углеводов.

Функции мозга в большой степени зависят от глюкозы. Если в крови, поступающей в мозговую ткань, концентрация глюкозы снижается в два раза в сравнении с нормой, то наступает потеря сознания и через несколько минут смерть. Основной путь использования глюкозы – аэробное окисление. С этим связана высокая чувствительность мозга к гипоксии. АТФ образуется в основном в окислительном фосфорилировании и используется в электрохимических и синтетических процессах. ПФЦ осуществляется с меньшей интенсивностью, чем аэробное окисление. Часть промежуточных продуктов окисления глюкозы используется для образования медиаторов (ацетилхолина, ГАМК), а также для резервирования ацетильного остатка в виде ацетиласпартата.

Нарушения углеводного обмена

Нарушения гидролиза и всасывания углеводов

Всасывание углеводов нарушается при недостаточности амилолитических ферментов желудочно-кишечного тракта (амилаза панкреатического сока и др.). При этом поступающие с пищей углеводы не расщепляются до моносахаридов и не всасываются. Развивается углеводное голодание.

Всасывание углеводов страдает также при нарушении фосфорилирования глюкозы в кишечной стенке, возникающем при воспалении кишечника, при отравлении ядами, блокирующими фермент гексокиназу (флоридзин, монойодацетат). Не происходит фосфорилирования глюкозы в кишечной стенке и она не поступает в кровь.

Всасывание углеводов особенно легко нарушается у детей грудного возраста, у которых еще не вполне сформировались пищеварительные ферменты и ферменты, обеспечивающие фосфорилирование и дефосфорилирование.

Гликогеновые болезни

- группа наследственных нарушений, в основе которых лежит снижение или отсутствие активности ферментов, катализирующих реакции синтеза или распада гликогена, либо нарушение регуляции этих ферментов.

1. Гликогенозы - заболевания, обусловленные дефектом ферментов, участвующих в распаде гликогена. Они проявляются или необычной структурой гликогена, или его избыточным накоплением в печени, сердечной или скелетных мышцах, почках, лёгких и других органах. В таблице 7-3 описаны некоторые типы гликогенозов, различающихся характером и локализацией ферментного дефекта.



Болезнь Гирке (тип I) отмечают наиболее часто. Описание основных симптомов этого типа гликогеноза и их причин может служить основанием для понимания симптомов всех остальных типов. Причина этого заболевания - наследственный дефект глюкозо-6-фосфатазы - фермента, обеспечивающего выход глюкозы в кровоток после её высвобождения из гликогена клеток печени. Болезнь Гирке проявляется гипогликемией, гипертриацилглицеролемией (повышением содержания триацилглицеролов), гиперурикемией (повышением содержания мочевой кислоты).

Гипогликемия - следствие нарушения реакции образования свободной глюкозы из глюкозо-6-фосфата. Кроме того, вследствие дефекта глюкозо-6-фосфатазы происходит

накопление в клетках печени субстрата - глюкозо-6-фосфата, который вовлекается в процесс катаболизма, где он превращается в пируват и лактат. В крови повышается количество лактата, поэтому возможен ацидоз. В тяжёлых случаях результатом гипогликемии могут быть судороги. Гипогликемия сопровождается уменьшением содержания инсулина и снижением отношения инсулин/глюкагон, что, в свою очередь, ведёт к ускорению липолиза жировой ткани в результате действия глюкагона и выходу в кровь жирных кислот.

Гипертриацилглицеролемия возникает в результате снижения активности ЛП-липазы жировой ткани - фермента, активируемого инсулином и обеспечивающего усвоение ТАГ клетками жировой ткани.

Гиперурикемия возникает в результате следующих событий:

увеличиваются содержание в клетках глюкозо-6-фосфата и его использование в пентозофосфатном пути с образованием рибозо-5-фосфата - субстрата для синтеза пуриновых нуклеотидов;

увеличивается образование мочевой кислоты вследствие избыточного синтеза, а следовательно, и катаболизма пуриновых нуклеотидов, конечным продуктом которого является мочевая кислота.

снижается выведение мочевой кислоты вследствие увеличения продукции лактата и изменения рН мочи в кислую сторону, что затрудняет выведение уратов - труднорастворимых солей мочевой кислоты.

При диагностике данной патологии определяют активность глюкозо-6-фосфатазы в био-птатах печени. Кроме того, используют тест со стимуляцией глюкагоном или адреналином, который в случае болезни даёт отрицательный результат, т.е. после инъекции гормона уровень глюкозы в крови изменяется незначительно.

Лечение состоит в ограничении употребления продуктов, содержащих глюкозу. Рекомендуется исключить из диеты продукты, содержащие сахарозу и лактозу, так как образующиеся из них галактоза и фруктоза после превращения в глюкозо-6-фосфат ведут к дальнейшему накоплению гликогена. Для предотвращения гипогликемии используют метод частого кормления. Этим можно предупредить симптомы гипогликемии.

Гликогеноз I типа наследуется по аутосомно-рецессивному типу. Уже в раннем периоде наиболее заметный признак - гепатомегалия. У больных детей короткое туловище, большой живот, увеличены почки. Больные дети отстают в физическом развитии.

Описанное заболевание иногда обозначают как гликогеноз типа Iа, так как существует его разновидность - тип Ib. Гликогеноз Ib представляет собой редко встречающуюся патологию, которая характеризуется тем, что дефектен фермент транслоказа глюкозо-6-фосфата, обеспечивающий транспорт фос-форилированной глюкозы в ЭР. Поэтому, несмотря на достаточную активность глюкозо-6-фосфатазы, отщепление неорганического фосфата и выход глюкозы в кровь нарушен. Клиническая картина гликогеноза типа Ib такая же, как при гликогенозе Iа.

Болезнь Кори (тип III) весьма распространена. Она составляет 1/4 всех случаев печёночных гликогенозов. Накапливаемый гликоген аномален по структуре, так как дефектен фермент амило-1,6-глюкозидаза, гидролизующий гликозидные связи в местах разветвлений ("деветвящий фермент", от англ, debmnching enzyme). Недостаток глюкозы в крови проявляется быстро, поскольку гликогенолиз возможен, но в незначительном объёме. В отличие от гликогеноза I типа, лактоацидоз и гиперурикемия не отмечаются. Болезнь отличается более лёгким течением.

Болезнь Андерсен (тип IV) - крайне редкое аутосомно-рецессивное заболевание, возникающее вследствие дефекта ветвящего фермента - амило-1,4-1,6-глюкозилтрансферазы. Содержание гликогена в печени не сильно увеличено, но структура его изменена, и это препятствует его распаду. Молекула гликогена имеет мало точек ветвления, а также очень длинные и редкие боковые ветви. В то же время гипогликемия выражена умеренно. Болезнь развивается быстро, отягощается ранним циррозом печени и практически не поддаётся лечению. Дефект фермента ветвления обнаруживается не только в печени, но также в лейкоцитах, мышцах, фибробластах, на ранние и преобладающие проявления болезни обусловлены нарушением функции печени.

Болезнь Херса (тип VI) также проявляется симптомами, обусловленными поражением печени. Данный гликогеноз - следствие дефекта гликогенфосфорилазы. Б гепатоцитах накапливается гликоген нормальной структуры. Течение болезни сходно с гликогенозом I типа, но симптомы выражены в меньшей степени. Сниженная активность гликогенфосфорилазы обнаруживается также в лейкоцитах. Болезнь Херса - редкий тип гликогеноза; наследуется по аутосомнорецессивному типу.

Дефект киназы фосфорилазы (тип IX) встречается только у мальчиков, так как этот признак сцеплен с Х-хромосомой.

Дефект протеинкиназы А (тип X) , так же как и дефект киназы фосфорилазы, проявляется симптомами, сходными с болезнью Херса.

Мышечные формы гликогенозов характеризуются нарушением в энергоснабжении скелетных мышц. Эти болезни проявляются при физических нагрузках и сопровождаются болями и судорогами в мышцах, слабостью и быстрой утомляемостью.

Болезнь МакАрдла (тип V) - аутосомнорецессивная патология, при которой полностью отсутствует в скелетных мышцах активность гликогенфосфорилазы. Поскольку активность этого фермента в гепатоцитах нормальная, то гипогликемия не наблюдается (строение фермента в печени и мышцах кодируются разными генами). Тяжёлые физические нагрузки плохо переносятся и могут сопровождаться судорогами, однако при физических нагрузках гиперпродукция лактата не наблюдается, что подчёркивает значение внемышечных источников энергии для сокращения мышц, например, таких как жирные кислоты, замещающие при данной патологии глюкозу (см. раздел 8). Хотя болезнь не сцеплена с полом, большая частота заболевания характерна для мужчин.

Дефект фосфофруктокиназы характерен для гликогеноза VII типа. Больные могут выполнять умеренные физические нагрузки. Течение болезни сходно с гликогенозом V типа, но основные проявления менее выражены.

Дефект фосфоглщеромугазы и дефект М-субъединицы ЛДГ (ненумерованные по классификации Кори, см. табл. 7-3) характерны для мышечных форм гликогенозов. Проявления этих патологий аналогичны болезни МакАрдла. Дефект фосфоглицеромутазы в мышцах описан только у одного больного.

Агликогенозы

Агликогеноз (гликогеноз 0 по классификации) - заболевание, возникающее в результате дефекта гликогенсинтазы. В печени и других тканях больных наблюдают очень низкое содержание гликогена. Это проявляется резко выраженной гипогликемией в постабсорбтивном периоде. Характерный симптом - судороги, проявляющиеся особенно по утрам. Болезнь совместима с жизнью, но больные дети нуждаются в частом кормлении.

Таблица 1. Характеристика некоторых гликогеновых болезней

Углеводы - органические соединения, состоящие из углерода, водорода и кислорода. Роль углеводов для организма определяется их энергетической функцией. Углеводы (в виде глюкозы) служат непосредственным источником энергии почти для всех клеток организма. В организме содержание углеводов составляет около 2% сухой массы. Особенно велика роль углеводов для клеток головного мозга. Глюкоза обеспечивает энергетическую базу мозговой ткани, она необходима для дыхания мозга, для синтеза макроэргических соединений и медиаторов, без которых не может функционировать нервная система. Велика также роль глюкозы для мышечной ткани, особенно в период активной мышечной деятельности, поскольку мышцы в конечном итоге функционируют благодаря анаэробному и аэробному распаду углеводов.

Углеводы выполняют в организме роль резервного энергетического вещества, легко мобилизуемого в соответствии с потребностями организма. Таким резервным углеводом является гликоген. Его присутствие помогает организму сохранить постоянство углеводного питания тканей даже при условии длительных перерывов в поступлении пищи. Углеводы играют важную пластическую роль, входя в состав цитоплазмы и субклеточных образований: костей, хрящей и соединительной ткани. Являясь обязательной составной частью биологических жидкостей организма, углеводы играют немалую роль в процессе осмоса. Наконец, они входят в сложные соединения, выполняющие в организме специфические функции (нуклеиновые кислоты, мукополисахариды и др.), необходимые для обезжиривания химических веществ в печени и для иммунологической защиты организма.

Основная часть углеводов (около 70%), поступающих с пищей, окисляется до СО 2 и Н 2 О, покрывая тем самым значительную часть энергетических потребностей организма. Около 25-28% вводимой с пищей глюкозы превращается в жир и только 2 из 5% пищевой глюкозы синтезирует гликоген - резервный углевод организма.

При уменьшении уровня сахара в крови (гипогликемия) наблюдается падение температуры тела и мышечная слабость.

Основные этапы обмена углеводов . Углеводный обмен - процесс усвоения (синтеза, распада и выведения) клетками и тканями организма углеводов и углеводсодержащих веществ. Обмен углеводов состоит из следующих фаз: 1) переваривание углеводов в желудочно-кишечном тракте; 2) всасывание моносахаридов в кровь; 3) межуточный обмен углеводов; 4) ультрафильтрация и обратное всасывание глюкозы в почках.

Переваривание углеводов . Расщепление полисахаридов пищи начинается в полости рта, под действием фермента слюны - амилазы. Действие этого фермента слюны продолжается и в желудке до тех пор, пока под влиянием кислого желудочного сока не произойдет инактивация фермента. Дальнейшее расщепление углеводов продолжается в 12-перстной кишке под действием ферментов поджелудочной железы и собственно кишечных ферментов. Углеводы расщепляются до стадии глюкозы - ферментом мальтазой. Этот же фермент расщепляет дисахарид сахарозу до глюкозы и фруктозы. Принятая с пищей лактоза под действием фермента лактазы расщепляется до глюкозы и галактозы. Таким образом, в результате ферментативных процессов углеводы пищи превращаются в моносахариды: глюкозу, фруктозу и галактозу.

Всасывание углеводов . Моносахариды всасываются, главным образом, в тонком кишечнике через ворсинки слизистой оболочки и поступают в кровь воротной вены. Скорость всасывания моносахаридов различна. Если принять скорость всасывания за 100, то соответственная величина для галактозы будет 110, для фруктозы - 43. Всасывание глюкозы и галактозы происходит в результате активного транспорта, то есть с затратой энергии и при участии специальных транспортных систем. Активность всасывания этих моносахаридов усиливается транспортом Nа + через мембраны эпителия.

Всасывание глюкозы активируется гормонами коры надпочечников, тироксином, инсулином, а также серотонином и ацетилхоллином. Адреналин наоборот подавляет всасывание глюкозы из кишечника.

Межуточный обмен углеводов . Всосавшиеся через слизистую оболочку тонкого кишечника моносахариды переносятся током крови в головной мозг, печень, к мышцам и другим тканям, где они претерпевают различные превращения (рис. 23).

Рис. 23. Превращение углеводов в обмене веществ (по: Андреева и др., 1998)

1. В печени из глюкозы синтезируется гликоген, и этот процесс называется гликогенезом. В случае необходимости гликоген вновь распадается до глюкозы, то есть происходит гликогенолиз. Образовавшаяся глюкоза выделяется печенью в общий ток кровообращения.

2. Часть поступившей в печень глюкозы может подвергнуться окислению с выделением энергии, необходимой организму.

3. Глюкоза может стать источником синтеза неуглеводов, в частности белков и жиров.

4. Глюкоза может быть использована для синтеза некоторых веществ, необходимых для особых функций организма. Так, из глюкозы образуется глюкуроновая кислота - продукт, необходимый для осуществления обезвреживающей функции печени.

5. В печени может происходить новообразование углеводов из продуктов распада жиров и белков - глюконеогезе.

Глюкогенез и глюконеогенез взаимосвязаны и направлены на поддержание постоянства уровня сахара в крови. Печень человека выделяет в кровь в среднем 3,5 мг глюкозы на 1 кг массы в минуту или 116 мг на 1 м 2 поверхности тела. Способность печени регулировать процессы углеводного обмена и поддерживать уровень сахара в крови называется гомеостатической функцией, в основе которой лежит способность печеночной клетки изменять свою активность в зависимости от концентрации сахара в притекающей крови.

В углеводном обмене большой удельный вес занимает мышечная ткань. Мышцы, особенно в активном состоянии захватывают из крови большое количество глюкозы. В мышцах так же, как и в печени, синтезируется гликоген. Распад гликогена - один из источников энергетики мышечного сокращения. Мышечный гликоген расщепляется до молочной кислоты и этот процесс называется гликолизом . Затем часть молочной кислоты поступает в кровь и поглощается печенью для синтеза гликогена.

Головной мозг содержит очень большие запасы углеводов, поэтому для полноценной функции нервных клеток необходим постоянный приток в них глюкозы. Мозг поглощает около 69% глюкозы, выделяемой печенью (Држевецкая , 1994). Поступившая в мозг глюкоза преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту. Энергетические расходы мозга почти исключительно покрываются за счет углеводов, и это отличает мозг от всех других органов.

Ультрафильтрация и реабсорбция глюкозы . На первом этапе процесса мочеобразования, то есть во время ультрафильтрации в клубочковом аппарате, глюкоза переходит из крови в первичную мочу. В процессе дальнейшей реабсорбции в канальцевой части нефрона глюкоза вновь возвращается в кровь. Обратное всасывание глюкозы представляет собой активный процесс, происходящий с участием ферментов эпителия почечных канальцев.

Таким образом, почки участвуют в поддержании постоянства сахара во внутренней среде организма.

Возрастные особенности углеводного обмена . У плода на единицу массы тела ткани получают меньше кислорода, чем после рождения, что обусловливает преобладание анаэробного пути распада углеводов над аэробным. Поэтому в крови плода уровень молочной кислоты выше, чем у взрослых людей. Оказанная особенность сохраняется и в период новорожденности, и только к концу первого месяца у ребенка существенно увеличивается активность ферментов аэробного распада углеводов. Для новорожденного характерна гипогликемия (всего 2,2-2,5 моль/л, то есть вдвое меньше, чем у взрослых), поскольку во время родов резко истощаются запасы гликогена в печени - единственного источника глюкозы в крови.

Углеводы в организме ребенка являются не только основным источником энергии, но в виде глюкопротеидов и мукополисахаридов играют важную пластическую роль при создании основного вещества соединительной ткани клеточных мембран (Рачев и др., 1962).

Для детей характерна большая интенсивность углеводного обмена.
В детском организме ослаблено образование углеводов из белков и жиров (гликогенолиз), так как рост требует усиленного расхода белковых и жировых запасов организма. Углеводы в детском организме откладываются в мышцах, печени и других органах в незначительном количестве. В грудном возрасте на 1 кг веса ребенок должен получать 10-12 г углеводов, за счет которых покрывается около 40% всей энергетической потребности. В последующие годы количество углеводов колеблется от 8-9 до 12-15 г на 1 кг веса, причем за их счет покрывается уже до 50-60% всей калорийной потребности.

Суточное количество углеводов, которое дети должны получать с пищей, значительно увеличивается с возрастом: от 1 года до 3 лет - 193 г, от 4 до 7 лет - 287,9 г, от 8 до 13 лет - 370 г, от 14 до 17 лет - 470 г, что почти равно норме взрослого (по данным института питания РАМН).

Высокая потребность в углеводах у растущего ребенка отчасти объясняется тем обстоятельством, что рост тесно связан с процессами гликолиза, ферментативным распадом углеводов, сопровождающихся образованием молочной кислоты. Чем моложе ребенок, тем быстрее происходит его рост и больше интенсивность гликолетических процессов. Так, в среднем у ребенка на 1-м году жизни гликолитические процессы на 35% интенсивнее, чем у взрослых.

Представление об особенностях углеводного обмена у детей дает пищеварительная гипергликемия. Максимальный уровень сахара в крови большей частью отличается уже через 30 минут после приема пищи. Через 1 час кривая сахара начинает снижаться, и приблизительно через 2 часа уровень сахара в крови возвращается к исходному уровню или даже незначительно снижается.

Особенностью организма детей и подростков является менее совершенный углеводный обмен в смысле возможности быстрой мобилизации внутренних углеводных ресурсов организма и особенно поддержания углеводного обмена при выполнении физической нагрузки. При сильном утомлении во время продолжительных спортивных соревнований прием нескольких кусочков сахара улучшает состояние организма.

У детей и подростков при выполнении различных физических упражнений наблюдалось как правило, снижение сахара в крови, в то же время, как у взрослых, выполнение тех же гимнастических упражнений сопровождалось в среднем повышением уровня сахара в крови (Яковлев , 1962).

Гликоген - основной резервный полисахарид в клетках животных Гликоген представляет собой разветвленный
гомополисахарид, мономером которого является
глюкоза. Остатки глюкозы соединены в линейных
участках α-1,4-гликозидными связями, а в местах
разветвления - связями α-1,6. Молекула гликогена более
разветвлена, чем молекула крахмала, точки ветвления
встречаются через каждые 8-10 остатков глюкозы.
Разветвленная структура гликогена обеспечивает
большое количество концевых мономеров, что
способствует работе ферментов, отщепляющих или
присоединяющих мономеры, так как эти ферменты
могут одновременно работать на многих ветвях
молекулы гликогена.

Гликоген депонируется главным образом в печени и скелетных мышцах и хранится в цитозоле клеток в форме гранул. Гранулы гликогена плохо рас

Гликоген депонируется главным
образом в
печени и скелетных мышцах и
хранится в цитозоле клеток в форме
гранул. Гранулы гликогена плохо
растворимы в воде и не влияют на
осмотическое давление в клетке. Это
обстоятельство объясняет, почему в
клетке депонируется гликоген, а не
свободная глюкоза. С гранулами
связаны и некоторые ферменты,
участвующие в обмене гликогена, что
облегчает взаимодействие ферментов с
субстратами.

Синтез гликогена

Гликоген синтезируется в период
пищеварения (абсорбтивный
период: 1-2 часа после приема
углеводной пищи) в основном в
печени и в мышцах. Этот процесс
требует затрат энергии, так
включение одного мономера в
полисахаридную цепь сопряжено с
расходованием АТФ и УТФ
(реакции 1 и 3).
Образованная УДФ-глюкоза
(реакция 3) является субстратом
для гликогенсинтазы, которая
переносит остаток глюкозы
(реакция 4) на праймер
(олигосахарид из 4-8 остатков
глюкозы) и соединяет его α-1,4глюкозной связью.

Синтез гликогена

Когда длина синтезируемой цепи
увеличивается на 11-12 остатков
глюкозы, фермент ветвления глюкозил- 1,4-1,6-трансфераза
(реакция 5) образует боковую цепь
путем переноса фрагмента из 5-6
остатков глюкозы на внутренний
остаток глюкозы, соединяя его α-1,6гликозидной связью. Затем
удлинение цепей и ветвление их
повторяется много раз.
В итоге образуется сильно
разветвленная молекула,
содержащая до 1млн глюкозных
остатков.


Мобилизация (распад) гликогена происходит в
интервалах между приемами пищи (постабсорбтивный
период) и ускоряется во время физической работы. Этот
процесс осуществляется путем последовательного
отщепления остатков глюкозы, в виде глюкозо-1фосфата (реакция 1) с помощью гликогенфосфорилазы,
расщепляющей α-1,4-гликозидные связи. Этот фермент
не расщепляет α-1,6-гликозидные связи в местах
разветвлений, поэтому необходимы еще два фермента,
после действия которых остаток глюкозы в точке
ветвления освобождается в форме свободной глюкозы
(реакции 2 и 3). Гликоген распадается до глюкозо-6фосфата и свободной глюкозы без затрат АТФ.

Мобилизация (распад) гликогена

Мобилизация гликогена в печени отличается от таковой в
мышцах одной реакцией (реакция 5), обусловленной
наличием в печени фермента глюкозо-6-фосфатазы.
Присутствие в печени глюкозо-6-фосфатазы обеспечивает
главную функцию гликогена печени - высвобождение
глюкозы в кровь в интервалах между едой для
использования ее другими органами.
Таким образом, мобилизация гликогена печени
обеспечивает поддержание глюкозы в крови на постоянном
уровне 3,3-5,5 ммоль в постабсорбтивном периоде. Это
обстоятельство является обязательным условием для
работы других органов и особенно мозга. Через 10-18 часов
после приема пищи запасы гликогена в печени
значительно истощаются, а голодание в течение 24 часов
приводит к полному его исчерпанию.

10. Мобилизация (распад) гликогена

11.

Переключение процессов синтеза и
мобилизации гликогена в печени и
мышцах происходит при переходе из
абсорбтивного состояния в
постабсорбтивное и из состояния покоя
в режим физической работы. В
переключении этих метаболических
путей в печени участвуют инсулин,
глюкагон и адреналин, а в мышцах инсулин и адреналин.

12.

Влияние этих гормонов на синтез и распад гликогена
осуществляется путем изменения в противоположном
направлении активности двух ключевых ферментов:
гликогенсинтазы и гликогенфосфорилазы с помощью их

13.

Первичным сигналом для синтеза инсулина
и глюкагона является изменение
концентрации глюкозы в крови. Инсулин и
глюкагон постоянно присутствуют в крови,
но при переходе из абсорбтивного периода в
постабсорбтивный изменяется их
относительная концентрация. Отношение
концентраций инсулина и глюкагона в крови
называют инсулин-глюкагоновым индексом,
в зависимости от которого изменяется
направление метаболизма гликогена в
печени.

14.

Регуляция метаболизма гликогена
в печени
В период пищеварения концентрация
глюкозы в крови повышается до 10-12
ммоль/л, и это является сигналом для
синтеза и секреции инсулина.
Концентрация инсулина
увеличивается, и его влияние
является преобладающим. Инсулинглюкагоновый индекс в этом случае
повышается.

15. Регуляция метаболизма гликогена в печени

Под влиянием инсулина происходит:
ускорение транспорта глюкозы в клетки
инсулинзависимых мышечной и жировой
тканей;
изменение активности ферментов путем
фосфорилирования и дефосфорилирования.
Так, например, инсулин активирует
фосфодиэстеразу и снижает концентрацию
цАМФ в клетке. Кроме этого, инсулин
активирует фосфопротеинфосфатазу гранул
гликогена, которая дефосфорилирует
гликогенсинтазу и переводит ее в активное
состояние. Дефосфорилирование
гликогенфосфорилазы под влиянием
фосфопротеинфосфатазы, напротив, приводит
к ее инактивации;
изменение количества некоторых ферментов
путем индукции и репрессии их синтеза. В
печени инсулин индуцирует синтез
глюкокиназы, ускоряя тем самым
фосфорилирование глюкозы.
Все эти свойства инсулина приводят к
повышению скорости синтеза гликогена.

16. Под влиянием инсулина происходит:

Регуляция синтеза и распада гликогена в печени
глюкагоном и адреналином
В постабсорбтивном периоде
инсулин-глюкагоновый индекс
снижается и решающим является
влияние глюкагона, который
синтезируется в ответ на снижение
концентрации глюкозы в крови и
стимулирует распад гликогена в
печени. Механизм действия
глюкагона заключается в том, что
он «запускает»
аденилатциклазный каскад
реакций, приводящий к активации
гликогенфосфорилазы и
ингибированию гликогенсинтазы.
1 - глюкагон и адреналин взаимодействуют со специфическими мембранным! рецепторами. Комплекс
гормон-рецептор передает сигнал через аденилатциклазную систему на протеинкиназу А, переводя ее в
активное состояние;
2 - протеинкиназа А фосфорилирует и активирует киназу фосфорилазы;
3 - киназа фосфорилазы фосфорилирует гликогенфосфорилазу, переводя ее ι активную форму;
4. - протеинкиназа А фосфорилирует также гликогенсинтазу, переводя ее в неак тивное состояние;
5 - в результате ингибирования гликогенсинтазы и активации гликогенфосфорилазы ускоряется распад
гликогена

17. Регуляция синтеза и распада гликогена в печени глюкагоном и адреналином

Инозитолфосфатный механизм регуляции синтеза и
распада гликогена в печени адреналином и Са2+
Адреналин имеет сходный с глюкагоном
механизм действия на клетки печени.
Но возможно включение и другой
эффекторной системы передачи сигнала
в клетку печени. Какая система
передачи сигнала в клетку будет
использована, зависит от типа
рецепторов, с которыми
взаимодействует адреналин. Так,
присоединение адреналина к β2рецепторам клеток печени приводит в
действие аденилатциклазную систему.
Взаимодействие же адреналина с αjрецепторами «включает»
инозитолфосфатный механизм
трансмембранной передачи
гормонального сигнала. Результатом
действия обеих систем является
фосфорилирование ключевых
ферментов, изменение их активности и
переключение синтеза гликогена на его
распад.
1 - взаимодействие адреналина с α1-рецептором передает сигнал через инозитолфосфатную систему. Это
сопровождается активацией фосфолипазы С, мобилизацией Сa2+ из ЭР и активацией протеинкиназы С (ПКС).
2 - протеинкиназа С фосфорилирует гликогенсинтазу и переводит ее в неактивное состояние.
3 - комплекс 4Са2+-кальмодулин активирует киназу фосфорилазы и кальмодулинзависимые протеинкиназы.
4 - киназа фосфорилазы фосфорилирует гликогенфосфорилазу и тем самым ее активирует.
5 - гликогенфосфорилаза катализирует первую реакцию распада гликогена

18. Инозитолфосфатный механизм регуляции синтеза и распада гликогена в печени адреналином и Са2+

Регуляция метаболизма гликогена в мышцах
Активация адреналином мышечной
гликогенфосфорилазы происходит
несколько иначе, так как распад
гликогена в скелетных мышцах
стимулируется мышечными
сокращениями
1 - аллостерическая активация
гликогенфосфорилазы. В процессе
мышечного сокращения происходит
превращение АТФ в АМФ, который
является аллостерическим активатором
дефосфорилированной и малоактивной
формы гликогенфосфорилазы;
2 - нервный импульс инициирует
высвобождение из
саркоплазматического ретикулума ионы
Са2+, образующие комплекс с
кальмодулином, способный
активировать киназу фосфорилазы,
которая в свою очередь фосфорилирует
и активирует гликогенфосфорилазу;
3 - активация гликогенфосфорилазы
адреналином посредством
аденилатциклазной системы.

19. Регуляция метаболизма гликогена в мышцах

Значение регуляции обмена
гликогена.
При передаче гормонального сигнала через
внутриклеточные посредники происходит значительное его
усиление, поэтому активация фосфорилазы гликогена при
участии любой системы передачи сигнала в клетку печени
позволяет быстро получить большое количество глюкозы из
гликогена. Усиление гормонального сигнала в мышцах
имеет большое значение для обеспечения энергетическим
материалом интенсивной работы в условиях стресса,
например при бегстве от опасности.
При смене постабсорбтивного состояния на абсорбтивное или
по окончании мышечной работы вся система возвращается в
исходное состояние. Аденилатциклаза и фосфолипаза С
инактивируются, цАМФ разрушается фосфодиэстеразой, а
фосфопротеинфосфатаза вызывает переход всех
внутриклеточных ферментов «каскада» в
дефосфорилированную форму.

20.

Итак, регуляция скоростей
синтеза и распада гликогена в
печени поддерживает постоянство
концентрации глюкозы в крови
(3,3-5,5 ммоль/л).
Регуляция обмена гликогена в
мышцах обеспечивает
энергетическим материалом как
интенсивную работу мышц, так и
энергозатраты в состоянии покоя.

21. Значение регуляции обмена гликогена.

СИНТЕЗ
ГЛЮКОЗЫ ГЛЮКОНЕОГЕНЕЗ

22.

Глюконеогенез - это процесс синтеза
глюкозы из веществ неуглеводной
природы.
Субстратами глюконеогенеза являются:
1. пируват,
2. лактат,
3. глицерол,
4. аминокислоты.

23. СИНТЕЗ ГЛЮКОЗЫ - ГЛЮКОНЕОГЕНЕЗ

Важнейшей функцией
глюконеогенеза является
поддержание уровня глюкозы в
крови в период длительного
голодания и интенсивных
физических нагрузок.
Постоянное поступление
глюкозы в качестве источника
энергии особенно необходимо
для нервной ткани и
эритроцитов.

24.

Процесс протекает главным образом в печени и
менее интенсивно - в корковом веществе почек, а также в
слизистой оболочке кишечника.
Включение различных субстратов в глюконеогенез зависит
от физиологического состояния организма:
- лактат является продуктом анаэробного гликолиза в
эритроцитах, работающих мышцах и других тканях с
низким содержанием О2;
-
глицерол высвобождается при гидролизе жиров в жировой
ткани в постабсорбтивный период или при физической
нагрузке;
- аминокислоты образуются в результате распада белков
мышц и соединительной ткани и включаются в
глюконеогенез при длительном голодании или
продолжительной мышечной нагрузке.
Большинство реакций гликолиза и глюконеогенеза
являются обратимыми и катализируются одними и теми
же ферментами, что и гликолиз. Четыре реакции
глюконеогенеза необратимы.

25. Важнейшей функцией глюконеогенеза является поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических н

Схема гликолиза и глюконеогенеза

26.

Суммарное уравнение
глюконеогенеза
2 Пируват + 4 АТФ + 2 ГТФ +
+
2 (НАДН+Н) + 4 Н2О
1 Глюкоза + 4 АДФ + 2 ГДФ +
+
6 Н3РО4 + 2 НАДН

27. Схема гликолиза и глюконеогенеза

Глюкозолактатный цикл
или цикл Кори
Использование лактата в качестве субстрата в
глюконеогенезе связано с транспортом его в
печень и превращением в пируват

28. Суммарное уравнение глюконеогенеза

Особенности
обмена глюкозы в
различных тканях
и органах

29. Глюкозолактатный цикл или цикл Кори

Обмен углеводов в
печени
Одной из важнейших функций печени в
процессах обмена веществ является ее участие в
поддержании постоянного уровня глюкозы в
крови (глюкостатическая функция): глюкоза,
поступающая в избытке, превращается в
резервную форму, которая используется в
период, когда пища поступает в ограниченном
количестве.
Энергетические потребности самой печени, как и
других тканей организма, удовлетворяется за
счет внутриклеточного катаболизма
поступающей глюкозы.

30. Особенности обмена глюкозы в различных тканях и органах

Обмен углеводов в
печени
В печени катаболизм глюкозы представлен 2
процессами: 1) гликолитический путь
превращения 1 моль глюкозы в 2 моль лактата с
образованием 2 моль АТФ и
2) пентозофосфатный путь превращения 1 моль
глюкозы в 6 моль СО2 с образованием 12 моль
НАДФН. Оба процесса протекают в анаэробных
условиях, обе ферментативные системы
содержатся в растворимой части цитоплазмы,
оба пути требуют предварительного
фосфорилирования глюкозы.

31. Обмен углеводов в печени

Гликолиз обеспечивает энергией
клеточные реакции
фосфорилирования, синтез белка;
пентозофосфатный путь служит
источником энергии восстановления
для синтеза жирных кислот,
стероидов.

32. Обмен углеводов в печени

При аэробных условиях происходит сочетание гликолиза,
протекающего в цитоплазме и цикла лимонной кислоты с
окислительным фосфорилированием в митохондриях
достигается максимальноый выход энергии в 38 АТФ на 1
моль глюкозы. Фосфотриозы, образующиеся в процессе
гликолиза, могут быть использованы для синтеза глицерофосфата, необходимого для синтеза жиров. Пируват,
который образуется при гликолизе, может быть использован
для синтеза аланина, аспартата и других соединений, через
стадию образования оксалоацетата. В печени реакции
гликолиза могут протекать в обратном направлении и тогда
происходит синтез глюкозы путем глюконеогенеза. В
пентозофосфотном пути образуются пентозы, необходимые для
синтеза нуклеиновых кислот. В отличие от гликолиза
фосфоглюконатный путь необратим и здесь окисляется 1/3
глюкозы, 2/3 глюкозы окисляются по гликолитическому пути.

33. Обмен углеводов в печени

В печени протекают гликогенез и
гликогенолиз. Эти процессы
взаимосвязаны и регулируются как
внутри – так и внеклеточными
соотношениями между
поступлением и потреблением
глюкозы.

34. Обмен углеводов в печени

Обмен углеводов в мышцах
Цель мышечной клетки – наиболее
эффективно использовать
поступающую глюкозу для образования
АТФ, необходимого для осуществления
механической работы – сокращения. В
состоянии покоя значительные
количества глюкозы резервируются в
форме гликогена. Цитоплазма
мышечных клеток содержит в высоких
концентрациях ферменты гликолиза, а
изобилие митохондрий обеспечивает
эффективный распад продуктов
гликолиза через путь лимонной
кислоты и цепь переноса электронов.
Лишь в условиях крайнего утомления
эти аэробные процессы не справляются
с накоплением лактата.

35. Обмен углеводов в печени

Обмен углеводов в мышцах
В мышцах идет гликогенез, мышца осуществляет лишь немногие
синтетические функции. Ключевые ферменты глюконеогенеза в
мышцах отсутствуют, и глюконеогенез не идет. Для
восстановительных синтезов в мышце НАДФН не требуется, и
пентозофосфатный путь почти не функционирует.
Обмен углеводов в мышцах обеспечивает создание тканевых
запасов гликогена в состоянии покоя и использование этих
запасов, а также поступающей глюкозы при напряженной работе;
основные энергетические потребности всех типов мышц
удовлетворяются главным образом за счет окисления продуктов
обмена жиров. Ни медленно сокращающаяся гладкая мышечная
ткань, ни сердечная мышца не потребляют глюкозу в
значительной мере. Во время напряженной работы сердце
обеспечивает себя лактатом для окисления.

36. Обмен углеводов в мышцах

Фосфорилирование глюкозы в мышцах
происходит под дейстием гексокиназы, в
печени этот процесс катализируется
глюкокиназой. Эти ферменты отличаются по
Кm.
Кm≤ 0,1 ммоль/л гексокиназы значительно
ниже Кm = 10 ммоль/л глюкокиназы.
Фермент мышц – гексокиназа участвует во
внутриклеточной регуляции, т.е. этот
фермент будет фосфорилировать глюкозу
только до тех пор, пока глюкозо-6-ф
используется в мышцах для гликолиза или
образования гликогена.
Другое важнейшее различие между тканью
печени и мышцы состоит в отсутствии в
мышцах фермента глюкозо-6-фасфатазы.

37. Обмен углеводов в мышцах

Обмен углеводов в мозге
По сравнению со всеми органами тела функций мозга в
наибольшей степени зависит от обмена углеводов. Если в крови,
поступающей к мозгу, концентрация глюкозы становится вдвое
ниже нормальной, то в течение нескольких секунд наступает
потеря сознания, а через несколько минут – смерть. Для того
чтобы обеспечить освобождение достаточного количества энергии,
катаболизм глюкозы должен осуществляться в соответствии с
аэробными механизмами; об этом свидетельствует даже более
низкая чувствительность мозга к гипоксии, чем гипогликемии.
Метаболизм глюкозы в мозге обеспечивает синтез
нейромедиаторов, аминокислот, липидов, компонентов
нуклеиновых кислот. Пентозофосфатный путь функционирует в
небольшой мере, обеспечивая НАДФН для некоторых из этих
синтезов. Основной катаболизм глюкозы в ткани мозга протекает
по гликолитическому пути.
Гексокиназа мозга имеет высокое сродство к глюкозе, что
обеспечивает эффективное использование глюкозы мозгом.
Активность ферментов гликолиза велика.

38. Обмен углеводов в мышцах

Обмен углеводов в мозге
Высокая активность митохондриальных ферментов цикла
лимонной кислоты предотвращает накопление лактата в тканях
мозга; большая часть пирувата окисляется до Ацетил-КоА.
Небольшая часть Ацетил-КоА используется для образования
нейромедиатора ацетилхолина. Основное количество АцетилКоА подвергается окислению в цикле лимонной кислоты и дает
энергию. Метаболизм цикла Кребса используется для синтеза
аспартата и глутамата. Эти аминокислоты обеспечивают
обезвреживание аммиака в тканях мозга.
Мозг содержит мало гликогена (0,1% от общего веса); этот запас
расходуется очень быстро.
В условиях длительного голодания мозг использует как
источник энергии кетоновые тела. В крайних случаях такие
аминокислоты как глутамат и аспартат превращаются в
соответствующие кетокислоты, которые способны к окислению с
образованием энергии.

39. Обмен углеводов в мозге

Обмен углеводов в
эритроцитах
Эритроциты не содержат ядра, митохондрий. В эритроците не идут реакции
цикла лимонной кислоты, в них нет ферментов дыхательной цепи.
Парадоксальным является тот факт, что эритроцит, перенося кислород для
тканей, сам его не использует и получает энергию за счет аэробных
процессов.
Основным процессом в эритроцитах, который дает энергию, является
анаэробный гликолиз. При расщеплении фру-6-фф образуется НАДН,
необходимый для восстановления избытка метгемоглобина (окисленной
формы гемоглобина, не связывающей О2).
Побочным продуктом гликолиза в эритроцитах является 2,3дифосфоглицерат. 2,3-дифосфоглицерат связывается с гемоглобином,
уменьшает его сродство к О2 и, облегчает освобождение кислорода в тканях.
Пентозофосфатный путь в норме составляет лишь небольшую долю в
катаболизме глюкозы. В условиях повышенной потребности в НАДФН этот
процесс активизируется. НАДФН необходим для того, чтобы поддерживать
внутриклеточный восстановитель, глутатион, в его восстановленной SHформе. Воздействие агентов, ускоряющих окисление глутатиона в S-S-форму,
активирует реакции пентозофосфатного пути, которые обеспечивают
образование восстановленных эквивалентов в форме НАДФН+Н+.

40. Обмен углеводов в мозге

Особенности обмена глюкозы
в клетках опухoли
В клетках опухоли отмечается повышенная активность гексокиназы,
что приводит к быстрому поглощению и окислению глюкозы.
Опухолевая клетка является насосом, который выкачивает глюкозу из
кровотока. В условиях быстро растущей опухоли система кровеносных
сосудов отстает от роста опухоли и в таких клетках протекает
анаэробный гликолиз, который и дает энергию для роста клеток.
Выход энергии при анаэробном гликолизе составляет 2 моль АТФ и
поэтому процесс должен идти с большой скоростью, чтобы обеспечить
клетки опухоли энергией. Вследствие быстрого окисления глюкозы
возникает гипогликемия. Возникновение гипогликемии вызывает
ускорение глюконеогенеза и глюкоза начинает синтезироваться из
аминокислот. Следствием синтеза глюкозы из аминокислот является
падение веса у больных и развивается раковая кахексия.
Мембранная гексокиназа – работает как насос.
Гипогликемия.
Анаэробный гликолиз.
«Принудительный» глюконеогенез.
Раковая кахексия.

Углеводы, обширная группа органических соединений, входящих в состав всех живых организмов. Углеводы считаются основным источником снабжения организма энергией. Кроме того, они необходимы для нормального функционирования нервной системы, главным образом головного мозга. Доказано, что при интенсивной умственной деятельности расходы углеводов повышаются. Углеводы также играют важную роль в обмене белков, окислении жиров, но их избыток в организме создает жировые отложения.

Углеводы поступают с пищей в виде моносахаридов (фруктозы, галактозы), дисахаридов (сахарозы, лактозы) и полисахаридов (крахмала, клетчатки, гликогена, пектина), превращаясь в результате биохимических реакций в глюкозу. Потребность организма в углеводах составляет примерно 1 г на килограмм массы. Излишнее употребление углеводов, особенно сахара, чрезвычайно вредно.

Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70-80 % глюкозы и фруктозы. Помимо того, употребление углеводов в виде рафинированного сахара, конфет способствует развитию кариеса зубов. Поэтому рекомендуется в качестве источников углеводов больше использовать продукты, содержащие полисахариды (каши, картофель), фрукты и ягоды.

Средняя суточная потребность человека в углеводах составляет 4-5 г на килограмм массы. Углеводы в виде сахарного песка, меда, варенья рекомендуется вводить 35%, а остальное количество желательно восполнять за счет хлеба, картофеля, круп, яблок

Нервная регуляция

Возбуждение симпатических нервных волокон приводит к освобождению адреналина из надпочечников, который стимулирует расщепление гликогена в процессе гликогенолиза. Поэтому при раздражении симпатической нервной системы наблюдается гипергликемический эффект. Наоборот, раздражение парасимпатических нервных волокон сопровождается усилением выделения инсулина поджелудочной железой, поступлением глюкозы в клетку и гипогликемическим эффектом.

Гормональная регуляция

Инсулин, катехоламины, глюкагон, соматотропный и стероидные гормоны оказывают различное, но очень выраженное влияние на разные процессы углеводного обмена. Так, например, инсулин способствует накоплению в печени и мышцах гликогена, активируя фермент гликогенсинтетазу, и подавляет гликогенолиз и глюконеогенез.

Антагонист инсулина - глюкагон - стимулирует гликогенолиз. Адреналин, стимулируя действие аденилатциклазы, оказывает влияние на весь каскад реакций фосфоролиза. Гонадотропные гормоны активируют гликогенолиз в плаценте. Глюкокортикоидные гормоны стимулируют процесс глюконеогенеза. Соматотропный гормон оказывает влияние на активность ферментов пентозофосфатного пути и снижает утилизацию глюкозы периферическими тканями.



Углеводный обмен оценивают по содержанию в крови сахара (глюкозы), молочной (лактат) и других кислот .

Молочная кислота в норме составляет 0,33-0,78 ммоль/л. После тренировки (соревнования) лактат возрастает до 20 ммоль/л и даже более. Молочная кислота - это конечный продукт гликолиза, ее уровень в крови позволяет судить о соотношении процессов аэробного окисления и анаэробного гликолиза. Гипоксия при физической нагрузке приводит к увеличению содержания молочной кислоты в крови, образовавшийся лактат действует неблагоприятно на сократительные процессы в мышцах. Kроме того, уменьшение внутриклеточного pH может снизить ферментативную активность и тем самым затормозить физико- химические механизмы мышечного сокращения, что в итоге отрицательно влияет на спортивные результаты.

Kонцентрация глюкозы в крови в норме - 4,4-6,6 ммоль/л. При длительных физических нагрузках наличие сахара в крови снижается, особенно у слаботренированных спортсменов, во время участия в соревнованиях, проводимых в жарком и влажном климате.

По уровню глюкозы и молочной кислоты в крови можно судить о соотношении аэробного и анаэробного процессов в работающих мышцах.

Kреатин до тренировки составляет 2,6-3,3 мг%, а после тренировки повышается до 6,4 мг%. С ростом тренированности содержание креатина в крови после нагрузки уменьшается. Адаптированный к физическим нагрузкам организм спортсмена реагирует повышением уровня креатина в крови в меньшей степени, чем слабо тренированный. Длительное сохранение повышенного уровня креатина в крови свидетельствует о неполном восстановлении.



Потребность ребенка в углеводах значительна: грудной ребенок должен получать 10-15 г на 1 кг массы тела, примерно такое же количество углеводов требуется детям в возрасте до одного года и старше, а у детей школьного возраста количество углеводов в пищевом рационе может увеличиваться до 15 г/кг массы тела.

При определении оптимального количества углеводов в пищевом рационе должны быть учтены калорийность и определенное соотношение других компонентов пищи, жиров, белков и углеводов. Наиболее физиологичным следует считать соотношение Б:Ж:У: 1: 1: 4 (то есть 100 гр белков: 100 гр жиров:400 гр углеводов)

В первые месяцы жизни основным углеводом пищи является дисахарид лактоза (молочный сахар). Содержание лактозы в женском молоке составляет в среднем 70 г/л, а в коровьем - 48 г/л. Лактоза в желудочно-кишечном тракте гидролизуется на глюкозу и галактозу под действием фермента лактазы. Интенсивность ферментативного гидролиза лактозы в кишечнике у детей разного возраста неодинакова: она несколько снижена у новорожденных и максимальна в грудном возрасте.

Моносахариды всасываются, поступают в кровь и разносятся к разным органам тканям, вступая на путь внутриклеточного обмена. Большая часть галактозы в печени превращается в глюкозу, частично она используется на синтез ганглиозидов и цереброзидов. Глюкоза печени, мышц депонируется в виде гликогена.

По мере роста ребенка в питании лактоза уступает место сахарозе, крахмалу, гликогену и у школьников 7-9 лет половину всех углеводов составляют полисахариды; метаболизм лактозы снижается. В процесс пищеварения включаются новые ферментные системы. Однако ферменты, которые у детей старшего возраста обеспечивают полостное пищеварение, у детей раннего возраста малоактивны и даже отсутствуют совсем. Для детей раннего возраста характерно мембранное пищеварение.